Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest

被引:23
作者
Gao, Qingwu [1 ]
Liu, Xijun [2 ]
机构
[1] Nanjing Audit Univ, Sch Math & Stat, Nanjing 211815, Jiangsu, Peoples R China
[2] First Aeronaut Coll AF, Fdn Dept, Xinyang 464000, Peoples R China
关键词
Uniform asymptotics; Finite-time ruin probability; Upper tail asymptotic independence; Counting process; Widely lower orthant dependence; DISCOUNTED AGGREGATE CLAIMS; RANDOMLY WEIGHTED SUMS; RANDOM-VARIABLES; MODEL; INSURANCE;
D O I
10.1016/j.spl.2013.02.018
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper investigates the finite-time ruin probability in a risk model with constant force of interest, upper tail asymptotically independent claims, and a general claim arrival process. We obtain a uniformly asymptotic formula for times in a finite interval. In particular, with a certain dependence among the inter-arrival times, the formula holds uniformly for all times. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1527 / 1538
页数:12
相关论文
共 25 条
[1]   Extremes on the discounted aggregate claims in a time dependent risk model [J].
Asimit, Alexandru V. ;
Badescu, Andrei L. .
SCANDINAVIAN ACTUARIAL JOURNAL, 2010, (02) :93-104
[2]  
Bingham N.H., 1989, REGULAR VARIATION
[3]  
Chen Y., 2010, ASIA PAC J RISK INSU, V4, P4, DOI DOI 10.2202/2153-3792.1055.ARTICLE
[4]   Uniform asymptotics for the finite-time ruin probabilities of two kinds of nonstandard bidimensional risk models [J].
Chen, Yang ;
Wang, Le ;
Wang, Yuebao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) :114-129
[5]   The ruin probability of the renewal model with constant interest force and negatively dependent heavy-tailed claims [J].
Chen, Yiqing ;
Ng, Kai W. .
INSURANCE MATHEMATICS & ECONOMICS, 2007, 40 (03) :415-423
[6]   Precise large deviations of aggregate claims in a size-dependent renewal risk model [J].
Chen, Yiqing ;
Yuen, Kam C. .
INSURANCE MATHEMATICS & ECONOMICS, 2012, 51 (02) :457-461
[7]   Sums of Pairwise Quasi-Asymptotically Independent Random Variables with Consistent Variation [J].
Chen, Yiqing ;
Yuen, Kam C. .
STOCHASTIC MODELS, 2009, 25 (01) :76-89
[8]   SUBEXPONENTIALITY OF THE PRODUCT OF INDEPENDENT RANDOM-VARIABLES [J].
CLINE, DBH ;
SAMORODNITSKY, E .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 49 (01) :75-98
[9]  
Embrechts P., 1997, MODELLING EXTREMAL E, DOI [DOI 10.1007/978-3-642-33483-2, 10.1007/978-3-642-33483-2]
[10]  
Gao Q., 2012, ROCKY MOUNT IN PRESS