Universal motion of mirror-symmetric microparticles in confined Stokes flow

被引:15
作者
Georgiev, Rumen N. [1 ]
Toscano, Sara O. [1 ]
Uspal, William E. [2 ]
Bet, Bram [3 ]
Samin, Sela [3 ]
van Roij, Rene [3 ]
Eral, Huseyin Burak [1 ,4 ]
机构
[1] Delft Univ Technol, Proc & Energy Dept, NL-2628 CB Delft, Netherlands
[2] Univ Hawaii Manoa, Dept Mech Engn, Honolulu, HI 96822 USA
[3] Univ Utrecht, Inst Theoret Phys, Ctr Extreme Matter & Emergent Phenomena, NL-3584 CC Utrecht, Netherlands
[4] Univ Utrecht, Vant Hoff Lab Phys & Colloid Chem, Debye Inst, NL-3584 CH Utrecht, Netherlands
基金
荷兰研究理事会;
关键词
microfluidics; Hele-Shaw flow; particle-laden flow; LITHOGRAPHY; RESISTANCE; SEPARATION; PARTICLES; DYNAMICS; FIBERS;
D O I
10.1073/pnas.2005068117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Comprehensive understanding of particle motion in microfluidic devices is essential to unlock additional technologies for shape-based separation and sorting of microparticles like microplastics, cells, and crystal polymorphs. Such particles interact hydrodynamically with confining surfaces, thus altering their trajectories. These hydrodynamic interactions are shape dependent and can be tuned to guide a particle along a specific path. We produce strongly confined particles with various shapes in a shallow microfluidic channel via stop flow lithography. Regardless of their exact shape, particles with a single mirror plane have identical modes of motion: in-plane rotation and cross-stream translation along a bell-shaped path. Each mode has a characteristic time, determined by particle geometry. Furthermore, each particle trajectory can be scaled by its respective characteristic times onto two master curves. We propose minimalistic relations linking these timescales to particle shape. Together these master curves yield a trajectory universal to particles with a single mirror plane.
引用
收藏
页码:21865 / 21872
页数:8
相关论文
共 69 条
[1]   Acoustic focusing of microplastics in microchannels: A promising continuous collection approach [J].
Akiyama, Yoshitake ;
Egawa, Takatoshi ;
Koyano, Kiyoshi ;
Moriwaki, Hiroshi .
SENSORS AND ACTUATORS B-CHEMICAL, 2020, 304
[2]   Hybrid scheduling for the parallel solution of linear systems [J].
Amestoy, PR ;
Guermouche, A ;
L'Excellent, JY ;
Pralet, S .
PARALLEL COMPUTING, 2006, 32 (02) :136-156
[3]   A fully asynchronous multifrontal solver using distributed dynamic scheduling [J].
Amestoy, PR ;
Duff, IS ;
L'Excellent, JY ;
Koster, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) :15-41
[4]  
Batchelor G.K., 2000, An Introduction to Fluid Dynamics, P174, DOI [DOI 10.1017/CBO9780511800955.006, 10.1017/CBO9780511800955.006]
[5]   Ritonavir: An extraordinary example of conformational polymorphism [J].
Bauer, J ;
Spanton, S ;
Henry, R ;
Quick, J ;
Dziki, W ;
Porter, W ;
Morris, J .
PHARMACEUTICAL RESEARCH, 2001, 18 (06) :859-866
[6]   Phonons in a one-dimensional microfluidic crystal [J].
Beatus, Tsevi ;
Tlusty, Tsvi ;
Bar-Ziv, Roy .
NATURE PHYSICS, 2006, 2 (11) :743-748
[7]   Two-dimensional flow of driven particles: a microfluidic pathway to the non-equilibrium frontier [J].
Beatus, Tsevi ;
Shani, Itamar ;
Bar-Ziv, Roy H. ;
Tlusty, Tsvi .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (18) :5620-5646
[8]   The physics of 2D microfluidic droplet ensembles [J].
Beatus, Tsevi ;
Bar-Ziv, Roy H. ;
Tlusty, Tsvi .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2012, 516 (03) :103-145
[9]   Controlling transport dynamics of confined asymmetric fibers [J].
Bechert, M. ;
Cappello, J. ;
Daieff, M. ;
Gallaire, F. ;
Lindner, A. ;
Duprat, C. .
EPL, 2019, 126 (04)
[10]   Shape-based separation of micro-/nanoparticles in liquid phases [J].
Behdani, Behrouz ;
Monjezi, Saman ;
Carey, Mason J. ;
Weldon, Curtis G. ;
Zhang, Jie ;
Wang, Cheng ;
Park, Joontaek .
BIOMICROFLUIDICS, 2018, 12 (05)