Mind Robotic Rehabilitation Based on Motor Imagery Brain Computer Interface

被引:0
作者
Pan, Yaozhang [2 ]
Goh, Qing Zhuang [3 ]
Ge, Shuzhi Sam [1 ,4 ]
Tee, Keng Peng [2 ]
Hong, Keum-Shik [4 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Interact Digital Media Inst, Social Robot Lab, Singapore 117576, Singapore
[2] ASTAR, Inst Infocomm Res, Singapore 138632, Singapore
[3] Natl Univ Singapore, Dept Elect & Comp Engn, Power Elect Lab, Singapore 117576, Singapore
[4] Pusan Natl Univ, Dept Cogno Mech Engn, Cognit Sci Lab, Pusan 609735, South Korea
来源
SOCIAL ROBOTICS, ICSR 2010 | 2010年 / 6414卷
基金
新加坡国家研究基金会;
关键词
PERFORMANCE; REAL; MU;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a human robot interface called mind robotic rehabilitation is developed for regular training of neurological rehabilitation for stroke patients. The mind robotic rehabilitation is developed based on non-invasive motor imagery brain computer interface (BCI) technology. The use of a spatial filtering algorithm, common spatial pattern (CSP), is proposed for extracting features that maximize the discrimination of two different brain states, left hand movement imagination and right hand movement imagination, during motor imagery of the subject. Furthermore, we find that a feature fusion of feature vectors from both CSP and autoregressive (AR) spectral analysis can obviously improve the performance of the BCI. Quadratic discriminant analysis (QDA) is applied to the combined feature vectors and classifies the vectors into left or right motor imagery category. For evaluation of the proposed BCI, we compare the performance of the proposed method against methods using single feature extraction algorithm, i.e. CSP only or AR spectral analysis only, under an equivalent experiment environment and using the same classifier to estimate the classification accuracy. It is found that feature fusion significantly improves BCI performance.
引用
收藏
页码:161 / 171
页数:11
相关论文
共 50 条
  • [21] Meta heuristic assisted automated channel selection model for motor imagery brain computer interface
    Mandal, Sumanta Kumar
    Naskar, M. Nazma Bj
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (12) : 17111 - 17130
  • [22] PRINCIPLES OF MOTOR RECOVERY IN POST-STROKE PATIENTS USING HAND EXOSKELETON CONTROLLED BY THE BRAIN-COMPUTER INTERFACE BASED ON MOTOR IMAGERY
    Frolov, A. A.
    Husek, D.
    Biryukova, E. V.
    Bobrov, P. D.
    Mokienko, O. A.
    Alexandrov, A. V.
    NEURAL NETWORK WORLD, 2017, 27 (01) : 107 - 137
  • [23] Crosstalk disrupts the production of motor imagery brain signals in brain-computer interfaces
    Neo, Phoebe S. -H.
    Mayne, Terence
    Fu, Xiping
    Huang, Zhiyi
    Franz, Elizabeth A.
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2021, 9 (01)
  • [24] Transfer learning for motor imagery based brain-computer interfaces: A tutorial
    Wu, Dongrui
    Jiang, Xue
    Peng, Ruimin
    NEURAL NETWORKS, 2022, 153 : 235 - 253
  • [25] A Large Clinical Study on the Ability of Stroke Patients to Use an EEG-Based Motor Imagery Brain-Computer Interface
    Ang, Kai Keng
    Guan, Cuntai
    Chua, Karen Sui Geok
    Ang, Beng Ti
    Kuah, Christopher Wee Keong
    Wang, Chuanchu
    Phua, Kok Soon
    Chin, Zheng Yang
    Zhang, Haihong
    CLINICAL EEG AND NEUROSCIENCE, 2011, 42 (04) : 253 - 258
  • [26] Audio-cued motor imagery-based brain-computer interface: Navigation through virtual and real environments
    Velasco-Alvarez, Francisco
    Ron-Angevin, Ricardo
    da Silva-Sauer, Leandro
    Sancha-Ros, Salvador
    NEUROCOMPUTING, 2013, 121 : 89 - 98
  • [27] Localization of class-related mu-rhythm desynchronization in motor imagery based Brain-Computer Interface sessions
    Haufe, Stefan
    Tomioka, Ryota
    Dickhaus, Thorsten
    Sannelli, Claudia
    Blankertz, Benjamin
    Nolte, Guido
    Mueller, Klaus-Robert
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 5137 - 5140
  • [28] Boosting motor imagery brain-computer interface classification using multiband and hybrid feature extraction
    Moufassih, Mustapha
    Tarahi, Ousama
    Hamou, Soukaina
    Agounad, Said
    Azami, Hafida Idrissi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 49441 - 49472
  • [29] A novel motor imagery hybrid brain computer interface using EEG and functional transcranial Doppler ultrasound
    Khalaf, Aya
    Sejdic, Ervin
    Akcakaya, Murat
    JOURNAL OF NEUROSCIENCE METHODS, 2019, 313 : 44 - 53
  • [30] Evaluating the Feasibility of Visual Imagery for an EEG-Based Brain-Computer Interface
    Kilmarx, Justin
    Tashev, Ivan
    Millan, Jose del R.
    Sulzer, James
    Lewis-Peacock, Jarrod
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 2209 - 2219