On integrable discretization of the inhomogeneous Ablowitz-Ladik model

被引:5
作者
Konotop, VV
机构
[1] Univ Madeira, Dept Phys, P-9000 Funchal, Portugal
[2] Univ Madeira, Ctr Math Sci, P-9000 Funchal, Portugal
关键词
D O I
10.1016/S0375-9601(99)00336-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An integrable discretization of the inhomogeneous Ablowitz-Ladik model with a linear force is introduced. Conditions on parameters of the discretization which are necessary for reproducing Bloch oscillations are obtained. In particular, it is shown that the step of the discretization must be comensurable with the period of oscillations imposed by the inhomogeneous force. By proper choice of the step of the discretization the period of oscillations of a soliton in the discrete model can be made equal to an integer number of periods of oscillations in the underline continuous-time lattice. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:18 / 24
页数:7
相关论文
共 7 条
[1]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :598-603
[2]   DISCRETE VERSION OF THE NON-LINEAR SCHRODINGER EQUATION WITH LINEARLY CHI-DEPENDENT COEFFICIENTS [J].
BRUSCHI, M ;
LEVI, D ;
RAGNISCO, O .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1979, 53 (01) :21-30
[3]   DYNAMICS AND INTERACTION OF SOLITONS ON AN INTEGRABLE INHOMOGENEOUS LATTICE [J].
KONOTOP, VV ;
CHUBYKALO, OA ;
VAZQUEZ, L .
PHYSICAL REVIEW E, 1993, 48 (01) :563-568
[4]  
KONOTOP VV, 1995, FLUCTUATION PHENOMEN, P258
[5]  
KONOTOP VV, 1994, TEOR MAT FIZ, V99, P413
[6]  
SURIS YB, 392 I DYN SYST
[7]   ANALYTICAL AND NUMERICAL ASPECTS OF CERTAIN NONLINEAR EVOLUTION-EQUATIONS .1. ANALYTICAL [J].
TAHA, TR ;
ABLOWITZ, MJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 55 (02) :192-202