Full-field mapping of the stress-induced birefringence using a polarized low coherence interference microscope

被引:0
作者
Chen, Jenq-Shyong [1 ]
Huang, Yung-Kuo [1 ]
机构
[1] Natl Chung Cheng Univ, Dept Mech Engn, Chiayi 621, Taiwan
来源
FIFTH INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION SCIENCE AND TECHNOLOGY | 2009年 / 7133卷
关键词
Optical coherence microscope; polarization sensitive; stress-induced birefringence; DEPTH-RESOLVED BIREFRINGENCE; AXIS ORIENTATION; TOMOGRAPHY;
D O I
10.1117/12.821246
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A polarization-sensitive optical coherence microscope (PS-OCM) has been developed to non-destructively measure birefringence distribution at the surface and internal interfaces of multi-layer structures. The PS-OCM can make two-dimensional en face measurement by exploiting the parallel sensing capability of the CCD sensors. PS-OCM utilizes the low coherence interference principle to enable the depth-resolved mapping of the birefringence distribution inside the materials. By simultaneous detection of interference fringes in two orthogonal polarization states allows determination of the Strokes parameters of light. Comparison of the Strokes parameters of the incident state to that reflected light from the sample can yield a depth-resolved map of optical properties such as birefringence and refractive index. Because many semiconductor and optic materials such as ceramic/wafer/polymer/glass are stress-induced birefringence materials, changes in birefringence distribution may, for instance, indicate changes in material uniformity and stress inside the materials. The PS-OCM has the capability to measure the spatial stress-field distribution of a material caused by the residual stress or applied load. Using the high numerical aperture of the objective lens and the broad bandwidth of the light source, the PS-OCM has the 1.5micrometer and 1.6 micrometer resolutions respectively in the lateral direction and longitudinal (or depth) direction.
引用
收藏
页数:7
相关论文
共 21 条
[1]   Full-field optical coherence microscopy [J].
Beaurepaire, E ;
Boccara, AC ;
Lebec, M ;
Blanchot, L ;
Saint-Jalmes, H .
OPTICS LETTERS, 1998, 23 (04) :244-246
[2]  
Bouma, 2002, HDB OPTICAL COHERENC
[3]   In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography [J].
Cense, B ;
Chen, TC ;
Park, BH ;
Pierce, MC ;
de Boer, JF .
OPTICS LETTERS, 2002, 27 (18) :1610-1612
[4]   Ultrahigh-resolution optical coherence tomography [J].
Drexler, W .
JOURNAL OF BIOMEDICAL OPTICS, 2004, 9 (01) :47-74
[5]   Ultrahigh-resolution full-field optical coherence tomography [J].
Dubois, A ;
Grieve, K ;
Moneron, G ;
Lecaque, R ;
Vabre, L ;
Boccara, C .
APPLIED OPTICS, 2004, 43 (14) :2874-2883
[6]   High-resolution full-field optical coherence tomography with a Linnik microscope [J].
Dubois, A ;
Vabre, L ;
Boccara, AC ;
Beaurepaire, E .
APPLIED OPTICS, 2002, 41 (04) :805-812
[7]  
Fercher AF, 2003, REP PROG PHYS, V66, P239, DOI [10.1088/0034-4885/66/2/204, 10.2184/lsj.31.635]
[8]   Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography [J].
Guo, SG ;
Zhang, J ;
Wang, L ;
Nelson, JS ;
Chen, ZP .
OPTICS LETTERS, 2004, 29 (17) :2025-2027
[9]   Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography [J].
Hitzenberger, CK ;
Götzinger, E ;
Sticker, M ;
Pircher, M ;
Fercher, AF .
OPTICS EXPRESS, 2001, 9 (13) :780-790
[10]   OPTICAL COHERENCE TOMOGRAPHY [J].
HUANG, D ;
SWANSON, EA ;
LIN, CP ;
SCHUMAN, JS ;
STINSON, WG ;
CHANG, W ;
HEE, MR ;
FLOTTE, T ;
GREGORY, K ;
PULIAFITO, CA ;
FUJIMOTO, JG .
SCIENCE, 1991, 254 (5035) :1178-1181