Fabrication of carboxymethyl cellulose and graphene oxide bio-nanocomposites for flexible nonvolatile resistive switching memory devices

被引:52
作者
Liu, Tao [1 ]
Wu, Wei [2 ]
Liao, Kai-Ning [3 ]
Sun, Qijun [1 ]
Gong, Xianjing [1 ]
Roy, Vellaisamy A. L. [1 ]
Yu, Zhong-Zhen [3 ,4 ]
Li, Robert K. Y. [1 ]
机构
[1] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
[2] South China Univ Technol, Natl Engn Res Ctr Novel Equipment Polymer Proc, Key Lab Polymer Proc Engn, Minist Educ,Sch Mech & Automot Engn, Guangzhou 510640, Guangdong, Peoples R China
[3] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Coll Mat Sci & Engn, Beijing 100029, Peoples R China
[4] Beijing Univ Chem Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, Beijing 100029, Peoples R China
关键词
Graphene oxide; Carboxymethyl cellulose; Bio-nanomaterials; Memory device; Resistive switching; Flexibility; HIGH-DENSITY; QUANTUM DOTS; FILMS; PERFORMANCE; DESIGN; SKIN;
D O I
10.1016/j.carbpol.2019.03.040
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Nowadays the development of natural biomaterials as promising building polymers for flexible, biodegradable, biocompatible and environmentally friendly electronic devices is of great interest. As the most common natural polymers, cellulose and its derivatives have the potential to be applied in the devices owing to the easy processing, nontoxicity and biodegradability. Here, write-once-read-many-times resistive switching devices based on biodegradable carboxymethyl cellulose-graphene oxide (CMC-GO) nanocomposite are demonstrated for the first time. The hybridization sites formed by the gelation of CMC and GO molecules contribute to the excellent memory behaviors. When compared with devices base on pure GO and CMC, the device with the Al/CMC-GO/Al/SiO2 structure exhibits brilliant write-once-read-many-times (WORM) switching characteristics such as high ON/OFF current ratio of similar to 10(5), low switching voltage of 2.22 V, excellent stability and durability. What's more, the device shows high flexibility and good resistive switching behaviors even with soft PET substrate (Al/CMC-GO/Al/PET structure). This newly designed cellulose-graphene oxide-based polymer nanocomposites are quite cheap and easy processed for large scale manufacturing of memory devices and can further contribute to future biodegradable data storage applications such as portable stretchable displays, wearable electronics and electronic skins in the coming age of artificial intelligence.
引用
收藏
页码:213 / 220
页数:8
相关论文
共 58 条
[1]   Novel digital nonvolatile memory devices based on semiconducting polymer thin films [J].
Baek, Sungsik ;
Lee, Dongjin ;
Kim, Jiyoun ;
Hong, Sang-Hyun ;
Kim, Ohyun ;
Ree, Moonhor .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (15) :2637-2644
[2]  
BAKER M, 1992, SIGPLAN NOTICES, V27, P10, DOI 10.1145/143371.143380
[3]   Non-volatile memory technologies: emerging concepts and new materials [J].
Bez, R ;
Pirovano, A .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2004, 7 (4-6) :349-355
[4]   Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer [J].
Biswal, DR ;
Singh, RP .
CARBOHYDRATE POLYMERS, 2004, 57 (04) :379-387
[5]   Sodium carboxymethylcellulose-CTAB interaction: A detailed thermodynamic study of polymer-surfactant interaction with opposite charges [J].
Chakraborty, Tanushree ;
Chakraborty, Indranil ;
Ghosh, Soumen .
LANGMUIR, 2006, 22 (24) :9905-9913
[6]   Organic Resistive Memory Devices: Performance Enhancement, Integration, and Advanced Architectures [J].
Cho, Byungjin ;
Song, Sunghun ;
Ji, Yongsung ;
Kim, Tae-Wook ;
Lee, Takhee .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (15) :2806-2829
[7]   Enabling Strategies in Organic Electronics Using Ordered Block Copolymer Nanostructures [J].
De Rosa, Claudio ;
Auriemma, Finizia ;
Di Girolamo, Rocco ;
Pepe, Giovanni Piero ;
Napolitano, Teresa ;
Scaldaferri, Rossana .
ADVANCED MATERIALS, 2010, 22 (47) :5414-+
[8]   Conjugated polymer covalently modified graphene oxide quantum dots for ternary electronic memory devices [J].
Fan, Fei ;
Zhang, Bin ;
Cao, Yaming ;
Yang, Xutong ;
Gu, Junwei ;
Chen, Yu .
NANOSCALE, 2017, 9 (30) :10610-10618
[9]   Non-volatile memory based on the ferroelectric photovoltaic effect [J].
Guo, Rui ;
You, Lu ;
Zhou, Yang ;
Lim, Zhi Shiuh ;
Zou, Xi ;
Chen, Lang ;
Ramesh, R. ;
Wang, Junling .
NATURE COMMUNICATIONS, 2013, 4
[10]   25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress [J].
Hammock, Mallory L. ;
Chortos, Alex ;
Tee, Benjamin C-K ;
Tok, Jeffrey B-H ;
Bao, Zhenan .
ADVANCED MATERIALS, 2013, 25 (42) :5997-6037