Microstructure and Mechanical Behavior of High-Entropy Alloys

被引:58
|
作者
Licavoli, Joseph J. [1 ]
Gao, Michael C. [1 ,2 ]
Sears, John S. [1 ,2 ]
Jablonski, Paul D. [1 ]
Hawk, Jeffrey A. [1 ]
机构
[1] Natl Energy Technol Lab, Albany, OR 97321 USA
[2] Natl Energy Technol Lab, AECOM, Albany, OR 97321 USA
关键词
deformation; FCC crystal structure; fracture; high-entropy alloys; microstructure; tensile properties; TENSILE PROPERTIES; PHASE-STABILITY; DEFORMATION; EVOLUTION;
D O I
10.1007/s11665-015-1679-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-entropy alloys (HEAs) have generated interest in recent years due to their unique positioning within the alloy world. By incorporating a number of elements in high proportion, usually of equal atomic percent, they have high configurational entropy, and thus, they hold the promise of interesting and useful properties such as enhanced strength and alloy stability. The present study investigates the mechanical behavior, fracture characteristics, and microstructure of two single-phase FCC HEAs CoCrFeNi and CoCrFeNiMn with some detailed attention given to melting, homogenization, and thermo-mechanical processing. Ingots approaching 8 kg in mass were made by vacuum induction melting to avoid the extrinsic factors inherent to small-scale laboratory button samples. A computationally based homogenization heat treatment was given to both alloys in order to eliminate any solidification segregation. The alloys were then fabricated in the usual way (forging, followed by hot rolling) with typical thermo-mechanical processing parameters employed. Transmission electron microscopy was subsequently used to assess the single-phase nature of the alloys prior to mechanical testing. Tensile specimens (ASTM E8) were prepared with tensile mechanical properties obtained from room temperature through 800 A degrees C. Material from the gage section of selected tensile specimens was extracted to document room and elevated temperature deformation within the HEAs. Fracture surfaces were also examined to note fracture failure modes. The tensile behavior and selected tensile properties were compared with results in the literature for similar alloys.
引用
收藏
页码:3685 / 3698
页数:14
相关论文
共 50 条
  • [11] Microstructure and mechanical properties of NixFeCoCrAl high-entropy alloys
    Ji, Guo-Ning
    Xiang, Jun
    Zhao, Rong-Da
    Wu, Fu-Fa
    Chen, Shun-Hua
    MATERIALS TODAY COMMUNICATIONS, 2022, 32
  • [12] Microstructure and mechanical properties of FexCoCrNiMn high-entropy alloys
    Tao Zhang
    Lijun Xin
    Fufa Wu
    Rongda Zhao
    Jun Xiang
    Minghua Chen
    Songshan Jiang
    Yongjiang Huang
    Shunhua Chen
    Journal of Materials Science & Technology, 2019, 35 (10) : 2331 - 2335
  • [13] Effects of nitrogen alloying and friction stir processing on the microstructures and mechanical properties of CoCrFeMnNi high-entropy alloys
    Xiong, Feng
    Fu, Rui-dong
    Li, Yi-jun
    Sang, De-li
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 822 (822)
  • [14] Effect of Ge addition on the microstructure, mechanical properties, and corrosion behavior of CoCrFeNi high-entropy alloys
    Liu, Hung-Chih
    Tsai, Che-Wei
    INTERMETALLICS, 2021, 132
  • [15] Effects of Ta microalloying on the microstructure and mechanical properties of L12-strengthened CoCrFeNi-AlTi high-entropy alloys
    Qi, Wu
    Yang, Xiao
    Wang, Wenrui
    Peng, Tao
    Zhang, Ya
    Li, Yong
    Zhang, Yong
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 875
  • [16] Microstructure characteristics and mechanical properties of NbMoTiVWSix refractory high-entropy alloys
    Xu, Qin
    Wang, Qi
    Chen, De-zhi
    Fu, Yi-ang
    Shi, Qing-sheng
    Yin, Ya-jun
    Zhang, Shu-yan
    CHINA FOUNDRY, 2022, 19 (06) : 495 - 502
  • [17] Microstructure and mechanical properties of CoCrNiCuX high-entropy alloys fabricated by spark plasma sintering
    Luo, Wenqi
    Zou, Qin
    Li, Yanguo
    Ye, Xihui
    Yang, Xiaowei
    Song, Jintao
    Luo, Yongan
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2022, 113 (10) : 911 - 919
  • [18] Recent Development of Mechanical Behavior of Cubic High-entropy Alloys at Cryogenic Temperature
    Chang Haitao
    Li Wanpeng
    Yang Tao
    Huang, J. C.
    Wu Baolin
    Duan Guosheng
    Du Xinghao
    RARE METAL MATERIALS AND ENGINEERING, 2020, 49 (09) : 3273 - 3284
  • [19] Microstructure and Properties of FeAlCrNiMo x High-Entropy Alloys
    Li, X. C.
    Dou, D.
    Zheng, Z. Y.
    Li, J. C.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2016, 25 (06) : 2164 - 2169
  • [20] Fundamental understanding of mechanical behavior of high-entropy alloys at low temperatures: A review
    Lyu, Zongyang
    Fan, Xuesong
    Lee, Chanho
    Wang, Shao-Yu
    Feng, Rui
    Liaw, Peter K.
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (19) : 2998 - 3010