Microstructure and Mechanical Behavior of High-Entropy Alloys

被引:61
作者
Licavoli, Joseph J. [1 ]
Gao, Michael C. [1 ,2 ]
Sears, John S. [1 ,2 ]
Jablonski, Paul D. [1 ]
Hawk, Jeffrey A. [1 ]
机构
[1] Natl Energy Technol Lab, Albany, OR 97321 USA
[2] Natl Energy Technol Lab, AECOM, Albany, OR 97321 USA
关键词
deformation; FCC crystal structure; fracture; high-entropy alloys; microstructure; tensile properties; TENSILE PROPERTIES; PHASE-STABILITY; DEFORMATION; EVOLUTION;
D O I
10.1007/s11665-015-1679-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-entropy alloys (HEAs) have generated interest in recent years due to their unique positioning within the alloy world. By incorporating a number of elements in high proportion, usually of equal atomic percent, they have high configurational entropy, and thus, they hold the promise of interesting and useful properties such as enhanced strength and alloy stability. The present study investigates the mechanical behavior, fracture characteristics, and microstructure of two single-phase FCC HEAs CoCrFeNi and CoCrFeNiMn with some detailed attention given to melting, homogenization, and thermo-mechanical processing. Ingots approaching 8 kg in mass were made by vacuum induction melting to avoid the extrinsic factors inherent to small-scale laboratory button samples. A computationally based homogenization heat treatment was given to both alloys in order to eliminate any solidification segregation. The alloys were then fabricated in the usual way (forging, followed by hot rolling) with typical thermo-mechanical processing parameters employed. Transmission electron microscopy was subsequently used to assess the single-phase nature of the alloys prior to mechanical testing. Tensile specimens (ASTM E8) were prepared with tensile mechanical properties obtained from room temperature through 800 A degrees C. Material from the gage section of selected tensile specimens was extracted to document room and elevated temperature deformation within the HEAs. Fracture surfaces were also examined to note fracture failure modes. The tensile behavior and selected tensile properties were compared with results in the literature for similar alloys.
引用
收藏
页码:3685 / 3698
页数:14
相关论文
共 30 条
[1]   Dynamic strain aging studied at the atomic scale [J].
Aboulfadl, H. ;
Deges, J. ;
Choi, P. ;
Raabe, D. .
ACTA MATERIALIA, 2015, 86 :34-42
[2]  
American Society for Testing and Materials (ASTM), 2015, E8E8M15A ASTM
[3]  
[Anonymous], 1988, NIMS CREEP DAT SHEET
[4]   Temperature Effects on Deformation and Serration Behavior of High-Entropy Alloys (HEAs) [J].
Antonaglia, J. ;
Xie, X. ;
Tang, Z. ;
Tsai, C. -W. ;
Qiao, J. W. ;
Zhang, Y. ;
Laktionova, M. O. ;
Tabachnikova, E. D. ;
Yeh, J. W. ;
Senkov, O. N. ;
Gao, M. C. ;
Uhl, J. T. ;
Liaw, P. K. ;
Dahmen, K. A. .
JOM, 2014, 66 (10) :2002-2008
[5]  
Ashby M. F., 1981, PROG MATER SCI, P1
[6]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[7]  
Dodd B., 1987, DUCTILE FRACTURE DUC, P73
[8]   Tensile properties of high- and medium-entropy alloys [J].
Gali, A. ;
George, E. P. .
INTERMETALLICS, 2013, 39 :74-78
[9]   Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures [J].
He, J. Y. ;
Zhu, C. ;
Zhou, D. Q. ;
Liu, W. H. ;
Nieh, T. G. ;
Lu, Z. P. .
INTERMETALLICS, 2014, 55 :9-14
[10]   Mechanism of dynamic strain aging and characterization of its effect on the low-cycle fatigue behavior in type 316L stainless steel [J].
Hong, SG ;
Lee, S .
JOURNAL OF NUCLEAR MATERIALS, 2005, 340 (2-3) :307-314