Effect of reactor geometry on the temperature distribution of hydrogen producing solar reactors

被引:32
作者
Costandy, Joseph [2 ]
El Ghazal, Nour [2 ]
Mohamed, Mohamed T. [1 ]
Menon, Akanksha [1 ]
Shilapuram, Vidyasagar [1 ]
Ozalp, Nesrin [1 ]
机构
[1] Texas A&M Univ Qatar, Dept Mech Engn, Doha, Qatar
[2] Texas A&M Univ Qatar, Dept Chem Engn, Doha, Qatar
关键词
Solar reactor; Hydrogen; Methane cracking; Reactor geometry; Modeling; Design; CHEMICAL REACTOR; THERMAL-DECOMPOSITION; FLOW REACTOR; NATURAL-GAS; BED REACTOR; METHANE; CARBON; COPRODUCTION; DISSOCIATION; REDUCTION;
D O I
10.1016/j.ijhydene.2012.02.193
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Global effects of greenhouse gas emissions associated with the current extensive use of fossil fuels are increasingly attracting research groups and industry to find a solution. In order to reduce or avoid such emissions, solar thermal cracking of natural gas has been studied by many research groups as a clean and economically viable option for hydrogen production with zero CO2 emissions. By utilization of concentrated solar energy as the source of high temperature process heat, natural gas is decomposed into hydrogen gas and high grade carbon using a solar reactor. Our previous study shows that temperature distribution inside the solar reactor has significant effect on hydrogen production. In this paper, we expand our previous study by demonstrating that reactor geometry has a notable impact on temperature distribution inside the solar reactor and therefore it has an impact on natural gas to hydrogen conversion. Results show that there are approximately 22% and 32% losses from spherical and cylindrical reactors, respectively, while hydrogen production amount varies from 1.27 g/s to 8.95 g/s for spherical reactor, and 0.94 g/s to 8.94 g/s for cylindrical reactor geometry. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:16581 / 16590
页数:10
相关论文
共 28 条
[1]   Production of hydrogen by thermal methane splitting in a nozzle-type laboratory-scale solar reactor [J].
Abanades, S ;
Flamant, G .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2005, 30 (08) :843-853
[2]   Hydrogen production from solar thermal dissociation of methane in a high-temperature fluid-wall chemical reactor [J].
Abanades, Stephane ;
Flamant, Gilles .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2008, 47 (03) :490-498
[3]   Solar hydrogen production from the thermal splitting of methane in a high temperature solar chemical reactor [J].
Abanades, Stephane ;
Flamant, Gilles .
SOLAR ENERGY, 2006, 80 (10) :1321-1332
[4]  
Almodaris M, 2011, ASMEJSME 2011 8 THER, DOI [10.1115/ajtec2011-44387, DOI 10.1115/AJTEC2011-44387]
[5]   HIGH-TEMPERATURE SOLAR REACTORS FOR HYDROGEN-PRODUCTION [J].
BILGEN, E ;
GALINDO, J .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1981, 6 (02) :139-152
[6]   Effects of non-gray thermal radiation on the heating of a methane laminar flow at high temperature [J].
Caliot, C. ;
Abanades, S. ;
Soufiani, A. ;
Flamant, G. .
FUEL, 2009, 88 (04) :617-624
[7]   Two-dimensional model of methane thermal decomposition reactors with radiative heat transfer and carbon particle growth [J].
Caliot, Cyril ;
Flamant, Gilles ;
Patrianakos, Giorgos ;
Kostoglou, Margaritis ;
Konstandopoulos, Athanasios G. .
AICHE JOURNAL, 2012, 58 (08) :2545-2556
[8]   Solar-thermal dissociation of methane in a fluid-wall aerosol flow reactor [J].
Dahl, JK ;
Buechler, KJ ;
Weimer, AW ;
Lewandowski, A ;
Bingham, C .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (07) :725-736
[9]   Radiative transfer in a solar chemical reactor for the co-production of hydrogen and carbon by thermal decomposition of methane [J].
Hirsch, D ;
Steinfeld, A .
CHEMICAL ENGINEERING SCIENCE, 2004, 59 (24) :5771-5778
[10]   Solar hydrogen production by thermal decomposition of natural gas using a vortex-flow reactor [J].
Hirsch, D ;
Steinfeld, A .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (01) :47-55