Diagnosis for PEMFC Systems: A Data-Driven Approach With the Capabilities of Online Adaptation and Novel Fault Detection

被引:69
作者
Li, Zhongliang [1 ,2 ,3 ]
Outbib, Rachid [1 ]
Giurgea, Stefan [4 ,5 ,6 ]
Hissel, Daniel [5 ,6 ,7 ]
机构
[1] Aix Marseille Univ, LSIS Lab, UMR CNRS 6168, F-13397 Marseille 20, France
[2] FEMTO ST ENERGY UMR CNRS 6174, F-25030 Besancon, France
[3] FCLAB CNRS 3539, F-90010 Belfort, France
[4] Univ Technol Belfort Montbeliard UTBM, F-90400 Sevenans, France
[5] FEMTO ST ENERGY, F-25030 Besancon, France
[6] FCLAB, F-90010 Belfort, France
[7] Univ Franche Comte UFC, F-25000 Besancon, France
关键词
Classification; data-driven diagnosis; feature extraction; novel fault detection; online adaptation; polymer electrolyte membrane fuel cell (PEMFC) systems; SUPPORT VECTOR MACHINE; TRANSPORTATION APPLICATIONS; NEURAL-NETWORKS; CLASSIFICATION; DURABILITY;
D O I
10.1109/TIE.2015.2418324
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a data-driven strategy is proposed for polymer electrolyte membrane fuel cell system diagnosis. In the strategy, features are first extracted from the individual cell voltages using Fisher discriminant analysis. Then, a classification method named spherical-shaped multiple-class support vector machine is used to classify the extracted features into various classes related to health states. Using the diagnostic decision rules, the potential novel failure mode can be also detected. Moreover, an online adaptation method is proposed for the diagnosis approach to maintain the diagnostic performance. Finally, the experimental data from a 40-cell stack are proposed to verify the approach relevance.
引用
收藏
页码:5164 / 5174
页数:11
相关论文
共 21 条
[1]  
[Anonymous], 2000, Pattern Classification
[2]   Fuel cell diagnosis method based on multifractal analysis of stack voltage signal [J].
Benouioua, D. ;
Candusso, D. ;
Harel, F. ;
Oukhellou, L. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (05) :2236-2245
[3]   Rotor Faults Diagnosis Using Feature Selection and Nearest Neighbors Rule: Application to a Turbogenerator [J].
Biet, Melisande .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (09) :4063-4073
[4]   Statistical and Neural-Network Approaches for the Classification of Induction Machine Faults Using the Ambiguity Plane Representation [J].
Boukra, Tahar ;
Lebaroud, Abdesselam ;
Clerc, Guy .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (09) :4034-4042
[5]   Characterisation and modelling of a 5 kW PEMFC for transportation applications [J].
Candusso, D ;
Harel, F ;
De Bernardinis, A ;
François, X ;
Péra, MC ;
Hissel, D ;
Schott, P ;
Coquery, G ;
Kauffmann, JM .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (08) :1019-1030
[6]   A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine [J].
Cao, LJ ;
Chua, KS ;
Chong, WK ;
Lee, HP ;
Gu, QM .
NEUROCOMPUTING, 2003, 55 (1-2) :321-336
[7]  
Cauwenberghs G, 2001, ADV NEUR IN, V13, P409
[8]   Classification of High-Temperature PEM Fuel Cell Degradation Mechanisms Using Equivalent Circuits [J].
de Beer, Chris ;
Barendse, Paul S. ;
Pillay, Pragasen ;
Bullecks, Brian ;
Rengaswamy, Raghunathan .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (08) :5265-5274
[9]   LPV observer design for PEM fuel cell system: Application to fault detection [J].
de Lira, S. ;
Puig, V. ;
Quevedo, J. ;
Husar, A. .
JOURNAL OF POWER SOURCES, 2011, 196 (09) :4298-4305
[10]   Bearing Fault Detection by a Novel Condition-Monitoring Scheme Based on Statistical-Time Features and Neural Networks [J].
Delgado Prieto, Miguel ;
Cirrincione, Giansalvo ;
Garcia Espinosa, Antonio ;
Antonio Ortega, Juan ;
Henao, Humberto .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (08) :3398-3407