FINITE ELEMENT DISCRETIZATION OF STATE-CONSTRAINED ELLIPTIC OPTIMAL CONTROL PROBLEMS WITH SEMILINEAR STATE EQUATION

被引:33
|
作者
Neitzel, Ira [1 ]
Pfefferer, Johannes [2 ]
Roesch, Arnd [3 ]
机构
[1] Tech Univ Munich, Lehrstuhl M17, D-85748 Garching, Germany
[2] Univ Bundeswehr Munchen, Fak Bauingenieurwesen & Umweltwissensch, Inst Math & Bauinformat, D-85577 Neubiberg, Germany
[3] Univ Duisburg Essen, Fak Math, D-45127 Essen, Germany
基金
奥地利科学基金会;
关键词
optimal control; finite elements; semilinear elliptic PDE; state constraints; a priori error estimates; NUMERICAL APPROXIMATION; POINTWISE STATE; DIRICHLET PROBLEM; ERROR ANALYSIS; CONVERGENCE; SQP;
D O I
10.1137/140960645
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study a class of semilinear elliptic optimal control problems with pointwise state constraints. The purpose of this paper is twofold. First, we present convergence results for the finite element discretization of this problem class similarly to known results with finite-dimensional control space, thus extending results that are-for control functions-only available for linear-quadratic convex problems. We rely on a quadratic growth condition for the continuous problem that follows from second order sufficient conditions. Second, we show that the second order sufficient conditions for the continuous problem transfer to its discretized version. This is of interest, for example, when considering questions of local uniqueness of solutions or the convergence of solution algorithms such as the SQP method.
引用
收藏
页码:874 / 904
页数:31
相关论文
共 50 条
  • [1] A Priori Error Estimates for State-Constrained Semilinear Parabolic Optimal Control Problems
    Ludovici, Francesco
    Neitzel, Ira
    Wollner, Winnifried
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (02) : 317 - 348
  • [2] A Lagrange multiplier method for semilinear elliptic state constrained optimal control problems
    Karl, Veronika
    Neitzel, Ira
    Wachsmuth, Daniel
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 77 (03) : 831 - 869
  • [3] STATE-CONSTRAINED SEMILINEAR ELLIPTIC OPTIMIZATION PROBLEMS WITH UNRESTRICTED SPARSE CONTROLS
    Casas, Eduardo
    Troeltzsch, Fredi
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2020, 10 (03) : 527 - 546
  • [4] P1finite element methods for a weighted elliptic state-constrained optimal control problem
    Oh, Minah
    Ma, Lina
    Wang, Kening
    NUMERICAL ALGORITHMS, 2021, 87 (01) : 1 - 17
  • [5] UNIQUENESS CRITERIA FOR THE ADJOINT EQUATION IN STATE-CONSTRAINED ELLIPTIC OPTIMAL CONTROL
    Meyer, Christian
    Panizzi, Lucia
    Schiela, Anton
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (09) : 983 - 1007
  • [6] State-constrained relaxed problems for semilinear elliptic equations
    Arada, N
    Raymond, JP
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 223 (01) : 248 - 271
  • [7] An Efficient Nonmonotone Method for State-Constrained Elliptic Optimal Control Problems
    Omid Solaymani Fard
    Farhad Sarani
    Hadi Nosratipour
    Bulletin of the Iranian Mathematical Society, 2020, 46 : 943 - 963
  • [8] An Efficient Nonmonotone Method for State-Constrained Elliptic Optimal Control Problems
    Fard, Omid Solaymani
    Sarani, Farhad
    Nosratipour, Hadi
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (04) : 943 - 963
  • [9] Finite element error analysis for state-constrained optimal control of the Stokes equations
    De Los Reyes, Juan Carlos
    Meyer, Christian
    Vexler, Boris
    CONTROL AND CYBERNETICS, 2008, 37 (02): : 251 - 284
  • [10] A Priori Error Estimates for State-Constrained Semilinear Parabolic Optimal Control Problems
    Francesco Ludovici
    Ira Neitzel
    Winnifried Wollner
    Journal of Optimization Theory and Applications, 2018, 178 : 317 - 348