Fast Implementation for the Singular Value and Eigenvalue Decomposition Based on FPGA

被引:23
作者
Zhang Shuiping [1 ]
Tian Xin [2 ]
Xiong Chengyi [3 ]
Tian Jinwen [4 ]
Ming Delie [4 ]
机构
[1] Wuhan Inst Technol, Sch Computer Sci & Engn, Wuhan 430073, Peoples R China
[2] Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R China
[3] South Cent Univ Nationalities, Sch Elect & Informat Engn, Wuhan 430074, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
SVD; EVD; Jacobi; CORDIC; FPGA; ARCHITECTURE; ARRAY;
D O I
10.1049/cje.2016.06.033
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A fast and efficient hardware implementation for computing the Singular value decomposition (SVD) and Eigenvalue decomposition (EVD) is presented. Considering that the SVD and EVD are complex and expensive operations, to achieve high performance with low computing complexity, our approach takes full advantage of the combination of parallel and sequential computation, which can increase efficiently the hardware utilization. Besides, regarding to EVD, we propose a hardware solution of a simplified Coordinate rotation digital computer (CORDIC)-like algorithm which can obtain higher speed. The performance analysis and comparison results show that the proposed methods can be realized on Filed programmable gate arrays (FPGAs) with less computation time by using systolic array. It will be shown that the proposed implementation could be an efficient alternative for real-time applications.
引用
收藏
页码:132 / 136
页数:5
相关论文
共 17 条
[1]  
Ahmedsaid A, 2004, IEEE IMAGE PROC, P259
[2]  
[Anonymous], P 2004 INT S CIRC SY
[3]  
Bobda C., 2001, Proceedings 12th International Workshop on Rapid System Prototyping. RSP 2001, P38, DOI 10.1109/IWRSP.2001.933836
[4]   Novel HW Architecture Based on FPGAs Oriented to Solve the Eigen Problem [J].
Bravo, Ignacio ;
Mazo, Manuel ;
Lazaro, Jose Luis ;
Jimenez, Pedro ;
Gardel, Alfredo ;
Marron, Marta .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2008, 16 (12) :1722-1725
[5]  
BRENT RP, 1983, J VLSI COMPUT SYST, V1, P1
[6]   Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices [J].
Cai, T. Tony ;
Zhang, Anru .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (01) :122-132
[7]   Effective Processor Architecture for Matrix Decomposition [J].
Doukhnitch, Evgueni ;
Salamah, Muhammed ;
Andreev, Andrey .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (03) :1797-1804
[8]  
Lahabar S., 2009, P IEEE INT S PARALLE, P1
[9]   Regularized vector field learning with sparse approximation for mismatch removal [J].
Ma, Jiayi ;
Zhao, Ji ;
Tian, Jinwen ;
Bai, Xiang ;
Tu, Zhuowen .
PATTERN RECOGNITION, 2013, 46 (12) :3519-3532
[10]  
Ma W., 2006, P CANADIAN C ELECT C, P1047