A classification approach to prostate cancer localization in 3T Multi-Parametric MRI

被引:0
|
作者
Trigui, Rania [1 ,2 ]
Miteran, Johel [1 ]
Sellami, Lamia [2 ]
Walker, Paul [1 ,3 ]
Ben Hamida, Ahmed [2 ]
机构
[1] Univ Mirande, CNRS, Lab Elcct Informat & Image Le2i, UMR 5158, F-21000 Dijon, France
[2] Univ Sfax, ENIS, ATMS, Sfax, Tunisia
[3] Ctr Hosp Univ Dijon, F-21033 Dijon, France
关键词
mp-MRI; SVM; Random forest; Prostate cancer;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multiparametric-magnetic resonance imaging (mp-MRI) has demonstrated, in many studies, its potential in prostate cancer detection and analysis. We propose a supervised classification approach based on mp-MRI data base of 20 patients, in order to localize prostate cancer and to achieve a cartographic representation of the prostate voxels based on classification results. Proposed method provides a computer aided detection (CAD) software for prostatic cancer. For that, we have extracted varied features providing functional, anatomical and metabolic information helping the classifier to distinguish between three different classes ("Healthy", "Benign" and "Pathologic"). We started by evaluating Support Vector Machine (SVM) ability to separate healthy and pathologic voxels. We obtained an error rate of 0.99%, specificity 99.25% and sensitivity 98.85%. Then, by introducing "Benign" voxels, SVM gave an error rate of 26% using MRSI, Diffusion-Weighted MRI and Dynamic Contrast-Enhanced MRI. Next, we evaluated Random Forest performances which gave error rate of 24.60% when separating three different classes using MRSI, T2-MRI, Diffusion-Weighted MRI and Dynamic Contrast-Enhanced MRI. Finally, we presented color-coded maps based on classification results.
引用
收藏
页码:113 / 118
页数:6
相关论文
共 50 条
  • [31] Focal therapy for localized prostate cancer in the era of routine multi-parametric MRI
    M. J. Connor
    M. A. Gorin
    H. U. Ahmed
    R. Nigam
    Prostate Cancer and Prostatic Diseases, 2020, 23 : 232 - 243
  • [32] Focal therapy for localized prostate cancer in the era of routine multi-parametric MRI
    Connor, M. J.
    Gorin, M. A.
    Ahmed, H. U.
    Nigam, R.
    PROSTATE CANCER AND PROSTATIC DISEASES, 2020, 23 (02) : 232 - 243
  • [33] Particle swarm optimization based segmentation of Cancer in multi-parametric prostate MRI
    Gaurav Garg
    Mamta Juneja
    Multimedia Tools and Applications, 2021, 80 : 30557 - 30580
  • [34] Classification of Clinically Significant Prostate Cancer on Multi-Parametric MRI: A Validation Study Comparing Deep Learning and Radiomics
    Castillo T., Jose M. M.
    Arif, Muhammad
    Starmans, Martijn P. A.
    Niessen, Wiro J.
    Bangma, Chris H.
    Schoots, Ivo G.
    Veenland, Jifke F.
    CANCERS, 2022, 14 (01)
  • [35] NEGATIVE PREDICTIVE VALUE OF A NEGATIVE MULTI-PARAMETRIC MRI OF PROSTATE
    Mahon, Joseph
    Kaufman, Ronald P., Jr.
    O'Malley, Rebecca
    Mian, Badar
    Fisher, Hugh
    Essa, Ahmed
    JOURNAL OF UROLOGY, 2016, 195 (04): : E697 - E697
  • [36] Denoising techniques for multi-parametric prostate MRI: A Comparative Study
    Latrach, Afef
    Trigui, Rania
    Sellemi, Lamia
    2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP'2020), 2020,
  • [37] Logistic regression model for diagnosis of transition zone prostate cancer on multi-parametric MRI
    Dikaios, Nikolaos
    Alkalbani, Jokha
    Sidhu, Harbir Singh
    Fujiwara, Taiki
    Abd-Alazeez, Mohamed
    Kirkham, Alex
    Allen, Clare
    Ahmed, Hashim
    Emberton, Mark
    Freeman, Alex
    Halligan, Steve
    Taylor, Stuart
    Atkinson, David
    Punwani, Shonit
    EUROPEAN RADIOLOGY, 2015, 25 (02) : 523 - 532
  • [38] Multi-parametric MRI-Pathologic correlation of prostate cancer using tracked biopsies
    Xu, Sheng
    Turkbey, Baris
    Kruecker, Jochen
    Yan, Pingkun
    Locklin, Julia
    Pinto, Peter
    Choyke, Peter
    Wood, Bradford
    MEDICAL IMAGING 2010: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND MODELING, 2010, 7625
  • [39] Quantitative Multi-Parametric MRI of the Prostate Reveals Racial Differences
    Chatterjee, Aritrick
    Fan, Xiaobing
    Slear, Jessica
    Asare, Gregory
    Yousuf, Ambereen N.
    Medved, Milica
    Antic, Tatjana
    Eggener, Scott
    Karczmar, Gregory S.
    Oto, Aytekin
    CANCERS, 2024, 16 (20)
  • [40] SE-Mask-RCNN: segmentation method for prostate cancer on multi-parametric MRI
    Huang Y.-P.
    Hu J.-S.
    Qian X.-S.
    Zhou Z.-Y.
    Zhao W.-L.
    Ma Q.
    Shen J.-K.
    Dai Y.-K.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2021, 55 (01): : 203 - 212