A classification approach to prostate cancer localization in 3T Multi-Parametric MRI

被引:0
|
作者
Trigui, Rania [1 ,2 ]
Miteran, Johel [1 ]
Sellami, Lamia [2 ]
Walker, Paul [1 ,3 ]
Ben Hamida, Ahmed [2 ]
机构
[1] Univ Mirande, CNRS, Lab Elcct Informat & Image Le2i, UMR 5158, F-21000 Dijon, France
[2] Univ Sfax, ENIS, ATMS, Sfax, Tunisia
[3] Ctr Hosp Univ Dijon, F-21033 Dijon, France
关键词
mp-MRI; SVM; Random forest; Prostate cancer;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multiparametric-magnetic resonance imaging (mp-MRI) has demonstrated, in many studies, its potential in prostate cancer detection and analysis. We propose a supervised classification approach based on mp-MRI data base of 20 patients, in order to localize prostate cancer and to achieve a cartographic representation of the prostate voxels based on classification results. Proposed method provides a computer aided detection (CAD) software for prostatic cancer. For that, we have extracted varied features providing functional, anatomical and metabolic information helping the classifier to distinguish between three different classes ("Healthy", "Benign" and "Pathologic"). We started by evaluating Support Vector Machine (SVM) ability to separate healthy and pathologic voxels. We obtained an error rate of 0.99%, specificity 99.25% and sensitivity 98.85%. Then, by introducing "Benign" voxels, SVM gave an error rate of 26% using MRSI, Diffusion-Weighted MRI and Dynamic Contrast-Enhanced MRI. Next, we evaluated Random Forest performances which gave error rate of 24.60% when separating three different classes using MRSI, T2-MRI, Diffusion-Weighted MRI and Dynamic Contrast-Enhanced MRI. Finally, we presented color-coded maps based on classification results.
引用
收藏
页码:113 / 118
页数:6
相关论文
共 50 条
  • [21] Standardised scoring of a multi-parametric 3-T MRI for a targeted MRI-guided prostate biopsy
    Arsov, C.
    Blondin, D.
    Rabenalt, R.
    Antoch, G.
    Albers, P.
    Quentin, M.
    UROLOGE, 2012, 51 (06): : 848 - +
  • [22] Multi-resolution super learner for voxel-wise classification of prostate cancer using multi-parametric MRI
    Jin, Jin
    Zhang, Lin
    Leng, Ethan
    Metzger, Gregory J.
    Koopmeiners, Joseph S.
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (03) : 805 - 826
  • [23] Deep-Learning Models for Detection and Localization of Visible Clinically Significant Prostate Cancer on Multi-Parametric MRI
    Sun, Zhaonan
    Wu, Pengsheng
    Cui, Yingpu
    Liu, Xiang
    Wang, Kexin
    Gao, Ge
    Wang, Huihui
    Zhang, Xiaodong
    Wang, Xiaoying
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 58 (04) : 1067 - 1081
  • [24] Implementation of Multi-parametric Prostate MRI in Clinical Practice
    Andrea S. Kierans
    Samir S. Taneja
    Andrew B. Rosenkrantz
    Current Urology Reports, 2015, 16
  • [25] A survey of denoising techniques for multi-parametric prostate MRI
    Garg, Gaurav
    Juneja, Mamta
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (10) : 12689 - 12722
  • [26] Implementation of Multi-parametric Prostate MRI in Clinical Practice
    Kierans, Andrea S.
    Taneja, Samir S.
    Rosenkrantz, Andrew B.
    CURRENT UROLOGY REPORTS, 2015, 16 (08)
  • [27] A survey of denoising techniques for multi-parametric prostate MRI
    Gaurav Garg
    Mamta Juneja
    Multimedia Tools and Applications, 2019, 78 : 12689 - 12722
  • [28] Ruling out clinically significant prostate cancer with negative multi-parametric MRI
    Julie Y. An
    Abhinav Sidana
    Sarah A. Holzman
    Joseph A. Baiocco
    Sherif Mehralivand
    Peter L. Choyke
    Bradford J. Wood
    Baris Turkbey
    Peter A. Pinto
    International Urology and Nephrology, 2018, 50 : 7 - 12
  • [29] Ruling out clinically significant prostate cancer with negative multi-parametric MRI
    An, Julie Y.
    Sidana, Abhinav
    Holzman, Sarah A.
    Baiocco, Joseph A.
    Mehralivand, Sherif
    Choyke, Peter L.
    Wood, Bradford J.
    Turkbey, Baris
    Pinto, Peter A.
    INTERNATIONAL UROLOGY AND NEPHROLOGY, 2018, 50 (01) : 7 - 12
  • [30] Particle swarm optimization based segmentation of Cancer in multi-parametric prostate MRI
    Garg, Gaurav
    Juneja, Mamta
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (20) : 30557 - 30580