A classification approach to prostate cancer localization in 3T Multi-Parametric MRI

被引:0
|
作者
Trigui, Rania [1 ,2 ]
Miteran, Johel [1 ]
Sellami, Lamia [2 ]
Walker, Paul [1 ,3 ]
Ben Hamida, Ahmed [2 ]
机构
[1] Univ Mirande, CNRS, Lab Elcct Informat & Image Le2i, UMR 5158, F-21000 Dijon, France
[2] Univ Sfax, ENIS, ATMS, Sfax, Tunisia
[3] Ctr Hosp Univ Dijon, F-21033 Dijon, France
关键词
mp-MRI; SVM; Random forest; Prostate cancer;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multiparametric-magnetic resonance imaging (mp-MRI) has demonstrated, in many studies, its potential in prostate cancer detection and analysis. We propose a supervised classification approach based on mp-MRI data base of 20 patients, in order to localize prostate cancer and to achieve a cartographic representation of the prostate voxels based on classification results. Proposed method provides a computer aided detection (CAD) software for prostatic cancer. For that, we have extracted varied features providing functional, anatomical and metabolic information helping the classifier to distinguish between three different classes ("Healthy", "Benign" and "Pathologic"). We started by evaluating Support Vector Machine (SVM) ability to separate healthy and pathologic voxels. We obtained an error rate of 0.99%, specificity 99.25% and sensitivity 98.85%. Then, by introducing "Benign" voxels, SVM gave an error rate of 26% using MRSI, Diffusion-Weighted MRI and Dynamic Contrast-Enhanced MRI. Next, we evaluated Random Forest performances which gave error rate of 24.60% when separating three different classes using MRSI, T2-MRI, Diffusion-Weighted MRI and Dynamic Contrast-Enhanced MRI. Finally, we presented color-coded maps based on classification results.
引用
收藏
页码:113 / 118
页数:6
相关论文
共 50 条
  • [1] Automatic classification and localization of prostate cancer using multi-parametric MRI/MRS
    Trigui, R.
    Miteran, J.
    Walker, P. M.
    Sellami, L.
    Ben Hamida, A.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 31 : 189 - 198
  • [2] 3T MULTI-PARAMETRIC MRI PERFORMANCE IN PROSTATE CANCER DETECTION: PERIPHERAL ZONE TUMORS VS. TRANSITIONAL ZONE
    Asvadi, Nazanin
    Khoshnoodi, Pooria
    Alcala, Hector
    Moshksar, Amin
    Margolis, Daniel
    Sisk, Anthony
    Huang, Jiaoti
    Reiter, Robert
    Raman, Steven
    JOURNAL OF UROLOGY, 2016, 195 (04): : E251 - E251
  • [3] A boosting approach for prostate cancer detection using multi-parametric MRI
    Lemaitre, Guillaume
    Massich, Joan
    Marti, Robert
    Freixenet, Jordi
    Vilanova, Joan C.
    Walker, Paul M.
    Sidibe, Desire D.
    Meriaudeau, Fabrice
    TWELFTH INTERNATIONAL CONFERENCE ON QUALITY CONTROL BY ARTIFICIAL VISION, 2015, 9534
  • [4] Role of multi-parametric (mp) MRI in prostate cancer
    Nazim, Syed Muhammad
    Ather, Muhammad Hammad
    Salam, Basit
    JOURNAL OF THE PAKISTAN MEDICAL ASSOCIATION, 2018, 68 (01) : 98 - 104
  • [5] Multi-parametric MRI Examinations for the Detection of Prostate Cancer
    Graewert, Stephanie
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2019, 191 (03): : 185 - 185
  • [6] The use of multi-parametric MRI in the detection of prostate cancer
    Bolton, E. M.
    Quinlan, M.
    Costelloe, J.
    O'Kelly, F.
    Galvin, D.
    Lennon, G.
    Mulvin, D.
    McMahon, C.
    Quinlan, D.
    BJU INTERNATIONAL, 2014, 114 : 21 - 22
  • [7] Development of a Computer Aided Diagnosis Model for Prostate Cancer Classification on Multi-Parametric MRI
    Alfano, R.
    Soetemans, D.
    Bauman, G. S.
    Gibson, E.
    Gaed, M.
    Moussa, M.
    Gomez, J. A.
    Chin, J. L.
    Pautler, S.
    Ward, A. D.
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [8] IMPACT OF MULTI-PARAMETRIC MRI IN PROSTATE CANCER STRATIFICATION AND PROPOSAL OF A NEW RISK CLASSIFICATION
    Di Trapani, Ettore
    Catellani, Michele
    Russo, Andrea
    Cozzi, Gabriele
    Bianchi, Roberto
    Delor, Maurizio
    Conti, Andrea
    Bianco, Raffaele
    Mistretta, Francesco Alessandro
    Bottero, Danilo
    Musi, Gennaro
    De Cobelli, Ottavio
    ANTICANCER RESEARCH, 2018, 38 (04) : 2539 - 2540
  • [9] A Decomposable Model for the Detection of Prostate Cancer in Multi-parametric MRI
    Lay, Nathan
    Tsehay, Yohannes
    Sumathipala, Yohan
    Cheng, Ruida
    Gaur, Sonia
    Smith, Clayton
    Barbu, Adrian
    Lu, Le
    Turkbey, Baris
    Choyke, Peter L.
    Pinto, Peter
    Summers, Ronald M.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 : 930 - 939
  • [10] Deep transfer learning-based prostate cancer classification using 3 Tesla multi-parametric MRI
    Xinran Zhong
    Ruiming Cao
    Sepideh Shakeri
    Fabien Scalzo
    Yeejin Lee
    Dieter R. Enzmann
    Holden H. Wu
    Steven S. Raman
    Kyunghyun Sung
    Abdominal Radiology, 2019, 44 : 2030 - 2039