Selective recognition of c-MYC Pu22 G-quadruplex by a fluorescent probe

被引:80
作者
Zhai, Qianqian [1 ,2 ]
Gao, Chao [3 ]
Ding, Jieqin [2 ]
Zhang, Yashu [3 ]
Islam, Barira [4 ]
Lan, Wenxian [5 ,6 ]
Hou, Haitao [2 ]
Deng, Hua [2 ]
Li, Jun [2 ]
Hu, Zhe [1 ]
Mohamed, Hany, I [2 ,7 ]
Xu, Shengzhen [2 ]
Cao, Chunyang [5 ,6 ]
Haider, Shozeb M. [4 ]
Wei, Dengguo [1 ,2 ]
机构
[1] Huazhong Agr Univ, State Key Lab Agr Microbiol, Wuhan 430070, Hubei, Peoples R China
[2] Huazhong Agr Univ, Coll Sci, Wuhan 430070, Hubei, Peoples R China
[3] Huazhong Agr Univ, Coll Plant Sci & Technol, Wuhan 430070, Hubei, Peoples R China
[4] UCL, UCL Sch Pharm, 29-39 Brunswick Sq, London WC1N 1AX, England
[5] Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Bioorgan & Nat Prod Chem, 345 Lingling Rd, Shanghai 200032, Peoples R China
[6] Chinese Acad Sci, Shanghai Inst Organ Chem, Collaborat Innovat Ctr Chem Life Sci, 345 Lingling Rd, Shanghai 200032, Peoples R China
[7] Benha Univ, Chem Dept, Fac Sci, Banha 13518, Egypt
基金
中国国家自然科学基金;
关键词
LIGHT-UP PROBE; FORCE-FIELD; RNA MIMICS; CRYSTAL-STRUCTURE; SMALL-MOLECULE; DNA; PARALLEL; PROMOTER; APTAMER; DYNAMICS;
D O I
10.1093/nar/gkz059
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nucleic acid mimics of fluorescent proteins can be valuable tools to locate and image functional biomolecules in cells. Stacking between the internal G-quartet, formed in the mimics, and the exogenous fluorophore probes constitutes the basis for fluorescence emission. The precision of recognition depends upon probes selectively targeting the specific G-quadruplex in the mimics. However, the design of probes recognizing a G-quadruplex with high selectivity in vitro and in vivo remains a challenge. Through structure-based screening and optimization, we identified a light-up fluorescent probe, 9CI that selectively recognizes c-MYC Pu22 G-quadruplex both in vitro and ex vivo. Upon binding, the biocompatible probe emits both blue and green fluorescence with the excitation at 405 nm. With 9CI and c-MYC Pu22 G-quadruplex complex as the fluorescent response core, a DNA mimic of fluorescent proteins was constructed, which succeeded in locating a functional aptamer on the cellular periphery. The recognition mechanism analysis suggested the high selectivity and strong fluorescence response was attributed to the entire recognition process consisting of the kinetic match, dynamic interaction, and the final stacking. This study implies both the single stacking state and the dynamic recognition process are crucial for designing fluorescent probes or ligands with high selectivity for a specific G-quadruplex structure.
引用
收藏
页码:2190 / 2204
页数:15
相关论文
共 84 条
[1]   Quadruplex-Flanking Stem Structures Modulate the Stability and Metal Ion Preferences of RNA Mimics of GFP [J].
Ageely, Eman A. ;
Kartje, Zachary J. ;
Rohilla, Kushal J. ;
Barkau, Christopher L. ;
Gagnon, Keith T. .
ACS CHEMICAL BIOLOGY, 2016, 11 (09) :2398-2406
[2]   Solution structure of the major G-quadruplex formed in the human VEGF promoter in K+: insights into loop interactions of the parallel G-quadruplexes [J].
Agrawal, Prashansa ;
Hatzakis, Emmanuel ;
Guo, Kexiao ;
Carver, Megan ;
Yang, Danzhou .
NUCLEIC ACIDS RESEARCH, 2013, 41 (22) :10584-10592
[3]   Solution structure of the biologically relevant g-quadruplex element in the human c-MYC promoter. implications for g-quadruplex stabilization [J].
Ambrus, A ;
Chen, D ;
Dai, JX ;
Jones, RA ;
Yang, DZ .
BIOCHEMISTRY, 2005, 44 (06) :2048-2058
[4]   Tetrazolylpyrene unnatural nucleoside as a human telomeric multimeric G-quadruplex selective switch-on fluorescent sensor [J].
Bag, Subhendu Sekhar ;
Pradhan, Manoj Kumar ;
Talukdar, Sangita .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2017, 15 (48) :10145-10150
[5]   An epifluorescent attachment improves whole-plant digital photography of Arabidopsis thaliana expressing red-shifted green fluorescent protein [J].
Baker, Stokes S. ;
Vidican, Cleo B. ;
Cameron, David S. ;
Greib, Haittam G. ;
Jarocki, Christine C. ;
Setaputri, Andres W. ;
Spicuzza, Christopher H. ;
Burr, Aaron A. ;
Waqas, Meriam A. ;
Tolbert, Danzell A. .
AOB PLANTS, 2012,
[6]   Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? [J].
Balasubramanian, Shankar ;
Hurley, Laurence H. ;
Neidle, Stephen .
NATURE REVIEWS DRUG DISCOVERY, 2011, 10 (04) :261-275
[7]   Characterization of human telomere RNA G-quadruplex structures in vitro and in living cells using 19F NMR spectroscopy [J].
Bao, Hong-Liang ;
Ishizuka, Takumi ;
Sakamoto, Takashi ;
Fujimoto, Kenzo ;
Uechi, Tamayo ;
Kenmochi, Naoya ;
Xu, Yan .
NUCLEIC ACIDS RESEARCH, 2017, 45 (09) :5501-5511
[8]  
Campbell Nancy, 2012, Curr Protoc Nucleic Acid Chem, VChapter 17, DOI 10.1002/0471142700.nc1706s50
[9]   High-throughput sequencing of DNA G-quadruplex structures in the human genome [J].
Chambers, Vicki S. ;
Marsico, Giovanni ;
Boutell, Jonathan M. ;
Di Antonio, Marco ;
Smith, Geoffrey P. ;
Balasubramanian, Shankar .
NATURE BIOTECHNOLOGY, 2015, 33 (08) :877-+
[10]   Discovery of a new fluorescent light-up probe specific to parallel G-quadruplexes [J].
Chen, Shuo-Bin ;
Wu, Wei-Bin ;
Hu, Ming-Hao ;
Ou, Tian-Miao ;
Gu, Lian-Quan ;
Tan, Jia-Heng ;
Huang, Zhi-Shu .
CHEMICAL COMMUNICATIONS, 2014, 50 (81) :12173-12176