Effects of magneic field and quantum dot size on properties of exciton

被引:1
作者
Shen Man [1 ]
Zhang Liang [2 ]
Liu Jian-Jun [1 ,3 ]
机构
[1] Hebei Normal Univ, Coll Phys Sci & Informat Engn, Shijiazhuang 050024, Peoples R China
[2] Hebei Normal Univ, Dept Applicat Informat Technol, Shijiazhuang 050024, Peoples R China
[3] Shijiazhuang Univ, Dept Phys, Shijiazhuang 050035, Peoples R China
基金
中国国家自然科学基金;
关键词
exciton; quantum dot; magnetic field; ENERGY; STATES;
D O I
10.7498/aps.61.217103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In In0.6Ga0.4As/GaAs quantum dot, using a one-dimensional effective potential model and the finite difference method, we theoretically study the properties of an exciton under the influence of an applied magnetic field, such as the transition energy, the binding energy, the spatial distributions of the electron and the hole. The effects due to the applied magnetic filed and the quantum confinement on the binding energy are analyzed, and the following results are obtained: the ground state transition energy of the heavy-hole exciton can split into four energy levels due to the Zeeman effect, of which the results are in good agreement with experimental results; the binding energy increases monotonically with the increase of lateral confinement or magnetic field; the size of the quantum dot has a significant influence on the binding energy of the exciton, which can be seen both from the average distance between the electron and the hole and from the wave function distributions of the exciton.
引用
收藏
页数:6
相关论文
共 22 条
[1]   Coupling and entangling of quantum states in quantum dot molecules [J].
Bayer, M ;
Hawrylak, P ;
Hinzer, K ;
Fafard, S ;
Korkusinski, M ;
Wasilewski, ZR ;
Stern, O ;
Forchel, A .
SCIENCE, 2001, 291 (5503) :451-453
[2]   Electron and hole g factors and exchange interaction from studies of the exciton fine structure in In0.60Ga0.40As quantum dots [J].
Bayer, M ;
Kuther, A ;
Forchel, A ;
Gorbunov, A ;
Timofeev, VB ;
Schäfer, F ;
Reithmaier, JP ;
Reinecke, TL ;
Walck, SN .
PHYSICAL REVIEW LETTERS, 1999, 82 (08) :1748-1751
[3]   Effective interaction for charge carriers confined in quasi-one-dimensional nanostructures [J].
Bednarek, S ;
Szafran, B ;
Chwiej, T ;
Adamowski, J .
PHYSICAL REVIEW B, 2003, 68 (04)
[4]   Controlling the Polarization Eigenstate of a Quantum Dot Exciton with Light [J].
Belhadj, Thomas ;
Simon, Claire-Marie ;
Amand, Thierry ;
Renucci, Pierre ;
Chatel, Beatrice ;
Krebs, Olivier ;
Lemaitre, Aristide ;
Voisin, Paul ;
Marie, Xavier ;
Urbaszek, Bernhard .
PHYSICAL REVIEW LETTERS, 2009, 103 (08)
[5]   Electric-field-induced coherent coupling of the exciton states in a single quantum dot [J].
Bennett, A. J. ;
Pooley, M. A. ;
Stevenson, R. M. ;
Ward, M. B. ;
Patel, R. B. ;
de la Giroday, A. Boyer ;
Skoeld, N. ;
Farrer, I. ;
Nicoll, C. A. ;
Ritchie, D. A. ;
Shields, A. J. .
NATURE PHYSICS, 2010, 6 (12) :947-950
[6]   Universal quantum computation with the exchange interaction [J].
DiVincenzo, DP ;
Bacon, D ;
Kempe, J ;
Burkard, G ;
Whaley, KB .
NATURE, 2000, 408 (6810) :339-342
[7]   Excitonic energy of vertically stacked self-assmbled InAs quantum dots [J].
Dong, QR ;
Niu, ZC .
ACTA PHYSICA SINICA, 2005, 54 (04) :1794-1798
[8]   Influence of well-width fluctuations on the binding energy of excitons, charged excitons, and biexcitons in GaAs-based quantum wells [J].
Filinov, AV ;
Riva, C ;
Peeters, FM ;
Lozovik, YE ;
Bonitz, M .
PHYSICAL REVIEW B, 2004, 70 (03) :035323-1
[9]   Energy spectra of an exciton in a Gaussian potential and magnetic field [J].
Gu, J ;
Liang, JQ .
PHYSICS LETTERS A, 2004, 323 (1-2) :132-137
[10]   Variational wave function for a quantum dot in a magnetic field: A quantum Monte Carlo study [J].
Harju, A ;
Sverdlov, VA ;
Nieminen, RM .
EUROPHYSICS LETTERS, 1998, 41 (04) :407-412