Drug-target interaction prediction with a deep-learning-based model

被引:0
作者
Xie, Lingwei [1 ]
Zhang, Zhongnan [1 ]
He, Song [2 ]
Bo, Xiaochen [2 ]
Song, Xinyu [2 ]
机构
[1] Xiamen Univ, Software Sch, Xiamen 361005, Peoples R China
[2] Beijing Inst Radiat Med, Beijing 100850, Peoples R China
来源
2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) | 2017年
关键词
drug-target interaction; deep learning; LINCS projetct; transcriptome data; NETWORKS; SPACES;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Drug-target interaction identification is of highly importance in drug research and development. The traditional experimental paradigm is costly, while the previous in silico prediction paradigm remains a challenge because of diversified data production platforms and data scarcity. In this paper, we modeled drug-target interaction prediction as a binary classification task based on transcriptome data of drug stimulation and gene knockout from LINCS project and developed a framework with a deep-learning-based model to predict potential interactions. The evaluation results showed that not only did our framework fit data with better accuracy than other classical methods, but predicted more credible drug-target interactions. What's more, the prediction has high percentage of overlap interactions across other platforms.
引用
收藏
页码:469 / 476
页数:8
相关论文
共 18 条
[1]   Supervised prediction of drug-target interactions using bipartite local models [J].
Bleakley, Kevin ;
Yamanishi, Yoshihiro .
BIOINFORMATICS, 2009, 25 (18) :2397-2403
[2]   Drug target identification using side-effect similarity [J].
Campillos, Monica ;
Kuhn, Michael ;
Gavin, Anne-Claude ;
Jensen, Lars Juhl ;
Bork, Peer .
SCIENCE, 2008, 321 (5886) :263-266
[3]   TTD: Therapeutic Target Database [J].
Chen, X ;
Ji, ZL ;
Chen, YZ .
NUCLEIC ACIDS RESEARCH, 2002, 30 (01) :412-415
[4]   Gene expression inference with deep learning [J].
Chen, Yifei ;
Li, Yi ;
Narayan, Rajiv ;
Subramanian, Aravind ;
Xie, Xiaohui .
BIOINFORMATICS, 2016, 32 (12) :1832-1839
[5]   Exploiting drug-disease relationships for computational drug repositioning [J].
Dudley, Joel T. ;
Deshpande, Tarangini ;
Butte, Atul J. .
BRIEFINGS IN BIOINFORMATICS, 2011, 12 (04) :303-311
[6]   SuperTarget and Matador:: resources for exploring drug-target relationships [J].
Guenther, Stefan ;
Kuhn, Michael ;
Dunkel, Mathias ;
Campillos, Monica ;
Senger, Christian ;
Petsalaki, Evangelia ;
Ahmed, Jessica ;
Urdiales, Eduardo Garcia ;
Gewiess, Andreas ;
Jensen, Lars Juhl ;
Schneider, Reinhard ;
Skoblo, Roman ;
Russell, Robert B. ;
Bourne, Philip E. ;
Bork, Peer ;
Preissner, Robert .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D919-D922
[7]   STITCH 3: zooming in on protein-chemical interactions [J].
Kuhn, Michael ;
Szklarczyk, Damian ;
Franceschini, Andrea ;
von Mering, Christian ;
Jensen, Lars Juhl ;
Bork, Peer .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D876-D880
[8]   DrugBank 4.0: shedding new light on drug metabolism [J].
Law, Vivian ;
Knox, Craig ;
Djoumbou, Yannick ;
Jewison, Tim ;
Guo, An Chi ;
Liu, Yifeng ;
Maciejewski, Adam ;
Arndt, David ;
Wilson, Michael ;
Neveu, Vanessa ;
Tang, Alexandra ;
Gabriel, Geraldine ;
Ly, Carol ;
Adamjee, Sakina ;
Dame, Zerihun T. ;
Han, Beomsoo ;
Zhou, You ;
Wishart, David S. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D1091-D1097
[9]  
Liu M, 2015, COMPUTER ENG APPL
[10]   Large-scale prediction and testing of drug activity on side-effect targets [J].
Lounkine, Eugen ;
Keiser, Michael J. ;
Whitebread, Steven ;
Mikhailov, Dmitri ;
Hamon, Jacques ;
Jenkins, Jeremy L. ;
Lavan, Paul ;
Weber, Eckhard ;
Doak, Allison K. ;
Cote, Serge ;
Shoichet, Brian K. ;
Urban, Laszlo .
NATURE, 2012, 486 (7403) :361-+