High-yield isolation of extracellular vesicles using aqueous two-phase system

被引:113
作者
Shin, Hyunwoo [1 ]
Han, Chungmin [1 ]
Labuz, Joseph M. [4 ]
Kim, Jiyoon [2 ]
Kim, Jongmin [1 ]
Cho, Siwoo [1 ]
Gho, Yong Song [3 ]
Takayama, Shuichi [4 ,5 ]
Park, Jaesung [1 ,2 ]
机构
[1] POSTECH, Dept Mech Engn, Pohang 790784, Gyeongbuk, South Korea
[2] POSTECH, Sch Interdisciplinary Biosci & Bioengn, Pohang 790784, Gyeongbuk, South Korea
[3] POSTECH, Dept Life Sci, Pohang 790784, Gyeongbuk, South Korea
[4] Univ Michigan, Dept Biomed Engn, Coll Engn, Biointerfaces Inst, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Coll Engn, Macromol Sci & Engn Ctr, Biointerfaces Inst, Ann Arbor, MI 48109 USA
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
新加坡国家研究基金会;
关键词
CELL-DERIVED EXOSOMES; INTERSTITIAL FLUID; SEPARATION; ANTIGEN; PROTEIN; MICROENVIRONMENT; BIOMARKERS; PARTITION; MICRORNA; LIQUID;
D O I
10.1038/srep13103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Extracellular vesicles (EVs) such as exosomes and microvesicles released from cells are potential biomarkers for blood-based diagnostic applications. To exploit EVs as diagnostic biomarkers, an effective pre-analytical process is necessary. However, recent studies performed with blood-borne EVs have been hindered by the lack of effective purification strategies. In this study, an efficient EV isolation method was developed by using polyethylene glycol/dextran aqueous two phase system (ATPS). This method provides high EV recovery efficiency (similar to 70%) in a short time (similar to 15 min). Consequently, it can significantly increase the diagnostic applicability of EVs.
引用
收藏
页数:11
相关论文
共 38 条
  • [2] Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers
    Alvarez, M. Lucrecia
    Khosroheidari, Mahdieh
    Ravi, Rupesh Kanchi
    DiStefano, Johanna K.
    [J]. KIDNEY INTERNATIONAL, 2012, 82 (09) : 1024 - 1032
  • [3] Arneson W., 2007, Clinical Chemistry - A Laboratory Perspective
  • [4] ATHA DH, 1981, J BIOL CHEM, V256, P2108
  • [5] Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment -: A novel resource for biomarker and therapeutic target discovery
    Celis, JE
    Gromov, P
    Cabezón, T
    Moreira, JMA
    Ambartsumian, N
    Sandelin, K
    Rank, F
    Gromova, I
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2004, 3 (04) : 327 - 344
  • [6] Microfluidic isolation and transcriptome analysis of serum microvesicles
    Chen, Chihchen
    Skog, Johan
    Hsu, Chia-Hsien
    Lessard, Ryan T.
    Balaj, Leonora
    Wurdinger, Thomas
    Carter, Bob S.
    Breakefield, Xandra O.
    Toner, Mehmet
    Irimia, Daniel
    [J]. LAB ON A CHIP, 2010, 10 (04) : 505 - 511
  • [7] Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry
    Clayton, A
    Court, J
    Navabi, H
    Adams, M
    Mason, MD
    Hobot, JA
    Newman, GR
    Jasani, B
    [J]. JOURNAL OF IMMUNOLOGICAL METHODS, 2001, 247 (1-2) : 163 - 174
  • [8] CD45 immunoaffinity depletion of vesicles from Jurkat T cells demonstrates that exosomes contain CD45: no evidence for a distinct exosome/HIV-I budding pathway
    Coren, Lori V.
    Shatzer, Teresa
    Ott, David E.
    [J]. RETROVIROLOGY, 2008, 5 (1)
  • [9] Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers
    D'Souza-Schorey, Crislyn
    Clancy, James W.
    [J]. GENES & DEVELOPMENT, 2012, 26 (12) : 1287 - 1299
  • [10] Microfluidic filtration system to isolate extracellular vesicles from blood
    Davies, Ryan T.
    Kim, Junho
    Jang, Su Chul
    Choi, Eun-Jeong
    Gho, Yong Song
    Park, Jaesung
    [J]. LAB ON A CHIP, 2012, 12 (24) : 5202 - 5210