The effect of flattening filter free delivery on endothelial dose enhancement with gold nanoparticles

被引:24
作者
Detappe, Alexandre [1 ,2 ,3 ]
Tsiamas, Panagiotis [1 ,2 ,4 ]
Ngwa, Wilfred [1 ,2 ]
Zygmanski, Piotr [1 ,2 ]
Makrigiorgos, Mike [1 ,2 ]
Berbeco, Ross [1 ,2 ]
机构
[1] Brigham & Womens Hosp, Dana Farber Canc Inst, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Boston, MA 02115 USA
[3] Univ Grenoble 1, Dept Med Phys, Grenoble 38000, France
[4] Univ Thessaly, Sch Med, Dept Med Phys, Larisa 41100, Greece
关键词
gold nanoparticle; vascular-disrupting agent; flattening filter free; dose enhancement; Monte-Carlo; VASCULAR DISRUPTING AGENTS; MONTE-CARLO; CANCER-THERAPY; RADIOTHERAPY;
D O I
10.1118/1.4791671
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The aim of this study is to quantify and to compare the dose enhancement factor from gold nanoparticles (AuNP) to tumor endothelial cells for different concentrations of AuNP, and clinical MV beam configurations. Methods: Tumor endothelial cells are modeled as slabs measuring 10 x 10 x 2 mu m. A spherical AuNP is simulated on the surface of the endothelial cell, within the blood vessel. 6 MV photon beams with and without the flattening filter are investigated for different field sizes, depths in material and beam modulation. The incident photon energy spectra for each configuration is generated using EGSnrc. The dose enhancement in the tumor endothelial cell is found using an analytical calculation. The endothelial dose enhancement factor is defined to be the ratio of the dose deposited with and without AuNPs. Results: It is found that clinical beam parameters may be chosen to maximize the effect of gold nanoparticles during radiotherapy. This effect is further amplified similar to 20% by the removal of the flattening filter. Modulation of the clinical beam with the multileaf collimator tends to decrease the proportion of low energy photons, therefore providing less enhancement than the corresponding open field. Conclusions: The results of this work predict a dose enhancement to tumor blood vessel endothelial cells using conventional therapeutic (MV) x-rays and quantify the relative change in enhancement with treatment depth and field size. (C) 2013 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4791671]
引用
收藏
页数:4
相关论文
共 22 条
[1]   DNA Damage Enhancement from Gold Nanoparticles for Clinical MV Photon Beams [J].
Berbeco, Ross I. ;
Korideck, Houari ;
Ngwa, Wilfred ;
Kumar, Rajiv ;
Patel, Janki ;
Sridhar, Srinivas ;
Johnson, Sarah ;
Price, Brendan D. ;
Kimmelman, Alec ;
Makrigiorgos, G. Mike .
RADIATION RESEARCH, 2012, 178 (06) :604-608
[2]   LOCALIZED DOSE ENHANCEMENT TO TUMOR BLOOD VESSEL ENDOTHELIAL CELLS VIA MEGAVOLTAGE X-RAYS AND TARGETED GOLD NANOPARTICLES: NEW POTENTIAL FOR EXTERNAL BEAM RADIOTHERAPY [J].
Berbeco, Ross I. ;
Ngwa, Wilfred ;
Makrigiorgos, G. Mike .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2011, 81 (01) :270-276
[3]   Gold Nanoparticles as Radiation Sensitizers in Cancer Therapy [J].
Chithrani, Devika B. ;
Jelveh, Salomeh ;
Jalali, Farid ;
van Prooijen, Monique ;
Allen, Christine ;
Bristow, Robert G. ;
Hill, Richard P. ;
Jaffray, David A. .
RADIATION RESEARCH, 2010, 173 (06) :719-728
[4]   The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources [J].
Cho, Sang Hyun ;
Jones, Bernard L. ;
Krishnan, Sunil .
PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (16) :4889-4905
[5]   Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study [J].
Cho, SH .
PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (15) :N163-N173
[6]   Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity [J].
Connor, EE ;
Mwamuka, J ;
Gole, A ;
Murphy, CJ ;
Wyatt, MD .
SMALL, 2005, 1 (03) :325-327
[7]   Radiotherapy enhancement with gold nanoparticles [J].
Hainfeld, James F. ;
Dilmanian, F. Avraham ;
Slatkin, Daniel N. ;
Smilowitz, Henry M. .
JOURNAL OF PHARMACY AND PHARMACOLOGY, 2008, 60 (08) :977-985
[8]   The use of gold nanoparticles to enhance radiotherapy in mice [J].
Hainfeld, JF ;
Slatkin, DN ;
Smilowitz, HM .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (18) :N309-N315
[9]   Gold nanoparticles as novel agents for cancer therapy [J].
Jain, S. ;
Hirst, D. G. ;
O'Sullivan, J. M. .
BRITISH JOURNAL OF RADIOLOGY, 2012, 85 (1010) :101-113
[10]   CELL-SPECIFIC RADIOSENSITIZATION BY GOLD NANOPARTICLES AT MEGAVOLTAGE RADIATION ENERGIES [J].
Jain, Suneil ;
Coulter, Jonathan A. ;
Hounsell, Alan R. ;
Butterworth, Karl T. ;
McMahon, Stephen J. ;
Hyland, Wendy B. ;
Muir, Mark F. ;
Dickson, Glenn R. ;
Prise, Kevin M. ;
Currell, Fred J. ;
O'Sullivan, Joe M. ;
Hirst, David G. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2011, 79 (02) :531-539