Chaos and quantum scars in a coupled top model

被引:25
作者
Mondal, Debabrata [1 ]
Sinha, Sudip [1 ]
Sinha, S. [1 ]
机构
[1] Indian Inst Sci Educ & Res Kolkata, Mohanpur 741246, Nadia, India
关键词
BODY APPROXIMATION METHODS; PHASE-TRANSITIONS; SOLVABLE MODEL; STATISTICAL-MECHANICS; ISING-MODEL; VALIDITY; DYNAMICS; SYSTEMS; THERMALIZATION; OSCILLATIONS;
D O I
10.1103/PhysRevE.102.020101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider a coupled top model describing two interacting large spins, which is studied semiclassically as well as quantum mechanically. This model exhibits a variety of interesting phenomena such as a quantum phase transition (QPT), a dynamical transition, and excited-state quantum phase transitions above a critical coupling strength. Both classical dynamics and entanglement entropy reveal ergodic behavior at the center of the energy density band for an intermediate range of coupling strength above QPT, where the level spacing distribution changes from Poissonian to Wigner-Dyson statistics. Interestingly, in this model we identify quantum scars as reminiscent of unstable collective dynamics even in the presence of an interaction. The statistical properties of such scarred states deviate from the ergodic limit corresponding to the random matrix theory and violate Berry's conjecture. In contrast to ergodic evolution, the oscillatory behavior in the dynamics of the unequal time commutator and survival probability is observed as the dynamical signature of a quantum scar, which can be relevant for its detection.
引用
收藏
页数:6
相关论文
共 97 条
[1]   Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons [J].
Abbarchi, M. ;
Amo, A. ;
Sala, V. G. ;
Solnyshkov, D. D. ;
Flayac, H. ;
Ferrier, L. ;
Sagnes, I. ;
Galopin, E. ;
Lemaitre, A. ;
Malpuech, G. ;
Bloch, J. .
NATURE PHYSICS, 2013, 9 (05) :275-279
[2]   Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction -: art. no. 010402 [J].
Albiez, M ;
Gati, R ;
Fölling, J ;
Hunsmann, S ;
Cristiani, M ;
Oberthaler, MK .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[3]   Equilibration and macroscopic quantum fluctuations in the Dicke model [J].
Altland, Alexander ;
Haake, Fritz .
NEW JOURNAL OF PHYSICS, 2012, 14
[4]   Quantum Chaos and Effective Thermalization [J].
Altland, Alexander ;
Haake, Fritz .
PHYSICAL REVIEW LETTERS, 2012, 108 (06)
[5]  
[Anonymous], 2014, Table of Integrals, Series, and Products, DOI DOI 10.1016/B978-0-12-384933-5.00009-6
[6]  
[Anonymous], 1992, Regular and Chaotic Dynamics
[7]  
[Anonymous], 2004, RANDOM MATRICES
[8]   Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles [J].
Atas, Y. Y. ;
Bogomolny, E. ;
Giraud, O. ;
Roux, G. .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[9]   Testing statistical bounds on entanglement using quantum chaos [J].
Bandyopadhyay, JN ;
Lakshminarayan, A .
PHYSICAL REVIEW LETTERS, 2002, 89 (06)
[10]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+