On the choice of parameterisation and priors for the Bayesian analyses of Mendelian randomisation studies

被引:13
作者
Jones, E. M. [1 ]
Thompson, J. R. [1 ]
Didelez, V. [2 ]
Sheehan, N. A. [1 ]
机构
[1] Univ Leicester, Dept Hlth Sci, Leicester, Leics, England
[2] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
基金
英国医学研究理事会;
关键词
Mendelian randomisation; Bayesian analyses; identifiability; BODY-MASS INDEX; INSTRUMENTAL VARIABLES; OBSERVATIONAL DATA; CAUSAL INFERENCE; IDENTIFIABILITY; EPIDEMIOLOGY; OBESITY; ERROR; RISK;
D O I
10.1002/sim.4499
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mendelian randomisation is a form of instrumental variable analysis that estimates the causal effect of an intermediate phenotype or exposure on an outcome or disease in the presence of unobserved confounding, using a genetic variant as the instrument. A Bayesian approach allows current knowledge to be incorporated into the analysis in the form of informative prior distributions, and the unobserved confounder can be modelled explicitly. We consider Bayesian methods for Mendelian randomisation in the case where all relationships are linear and there are no interactions. A full model in which the unobserved confounder is included explicitly is not completely identifiable, although the causal parameter can be estimated. We compare inferences from this general but non-identified model with a reduced parameter model that is identifiable. We show that, theoretically, additional information about the causal parameter can be obtained by using the non-identifiable full model, rather than the identifiable reduced model, but that this is advantageous only when realistically informative priors are used and when the instrument is weak or the sample size is small. Furthermore, we consider the impact of using vague versus informative priors. Copyright (C) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:1483 / 1501
页数:19
相关论文
共 30 条
[1]  
[Anonymous], 2000, CAUSALITY
[2]   PROBLEMS WITH INSTRUMENTAL VARIABLES ESTIMATION WHEN THE CORRELATION BETWEEN THE INSTRUMENTS AND THE ENDOGENOUS EXPLANATORY VARIABLE IS WEAK [J].
BOUND, J ;
JAEGER, DA ;
BAKER, RM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :443-450
[3]   Bayesian methods for meta-analysis of causal relationships estimated using genetic instrumental variables [J].
Burgess, Stephen ;
Thompson, Simon G. .
STATISTICS IN MEDICINE, 2010, 29 (12) :1298-1311
[4]  
DAWID AP, 1979, J ROY STAT SOC B MET, V41, P1
[5]  
Didelez V, 2007, CAUSALITY PROBABILIT
[6]   Mendelian randomization as an instrumental variable approach to causal inference [J].
Didelez, Vanessa ;
Sheehan, Nuala .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2007, 16 (04) :309-330
[7]   Assumptions of IV Methods for Observational Epidemiology [J].
Didelez, Vanessa ;
Meng, Sha ;
Sheehan, Nuala A. .
STATISTICAL SCIENCE, 2010, 25 (01) :22-40
[8]   A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity [J].
Frayling, Timothy M. ;
Timpson, Nicholas J. ;
Weedon, Michael N. ;
Zeggini, Eleftheria ;
Freathy, Rachel M. ;
Lindgren, Cecilia M. ;
Perry, John R. B. ;
Elliott, Katherine S. ;
Lango, Hana ;
Rayner, Nigel W. ;
Shields, Beverley ;
Harries, Lorna W. ;
Barrett, Jeffrey C. ;
Ellard, Sian ;
Groves, Christopher J. ;
Knight, Bridget ;
Patch, Ann-Marie ;
Ness, Andrew R. ;
Ebrahim, Shah ;
Lawlor, Debbie A. ;
Ring, Susan M. ;
Ben-Shlomo, Yoav ;
Jarvelin, Marjo-Riitta ;
Sovio, Ulla ;
Bennett, Amanda J. ;
Melzer, David ;
Ferrucci, Luigi ;
Loos, Ruth J. F. ;
Barroso, Ines ;
Wareham, Nicholas J. ;
Karpe, Fredrik ;
Owen, Katharine R. ;
Cardon, Lon R. ;
Walker, Mark ;
Hitman, Graham A. ;
Palmer, Colin N. A. ;
Doney, Alex S. F. ;
Morris, Andrew D. ;
Smith, George Davey ;
Hattersley, Andrew T. ;
McCarthy, Mark I. .
SCIENCE, 2007, 316 (5826) :889-894
[9]   Identifiability, improper priors, and Gibbs sampling for generalized linear models [J].
Gelfand, AE ;
Sahu, K .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (445) :247-253
[10]   Commentary: To cause or not to cause confusion vs transparency with Mendelian Randomization [J].
Goetghebeur, Els .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2010, 39 (03) :918-920