Epilepsy Among Elderly Medicare Beneficiaries A Validated Approach to Identify Prevalent and Incident Epilepsy

被引:24
作者
Moura, Lidia M. V. R. [1 ,2 ,3 ]
Smith, Jason R. [1 ]
Blacker, Deborah [2 ,4 ]
Vogeli, Christine [5 ]
Schwamm, Lee H. [1 ,3 ]
Cole, Andrew J. [1 ,3 ]
Hernandez-Diaz, Sonia [2 ]
Hsu, John [6 ,7 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02115 USA
[2] Harvard Med Sch, Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[3] Harvard Med Sch, Dept Neurol, Boston, MA 02115 USA
[4] Harvard Med Sch, Dept Psychiat, Boston, MA 02115 USA
[5] Harvard Med Sch, Dept Med, Boston, MA 02115 USA
[6] Harvard Med Sch, Massachusetts Gen Hosp, Mongan Inst, Dept Med, Boston, MA 02115 USA
[7] Harvard Med Sch, Dept Hlth Care Policy, Boston, MA 02115 USA
关键词
epilepsy; epidemiology; elderly; claims data; algorithms; ILAE COMMISSION; CASE-DEFINITION; POSITION PAPER; HEALTH; CLASSIFICATION; MORTALITY; TRENDS; RISK;
D O I
10.1097/MLR.0000000000001072
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: Uncertain validity of epilepsy diagnoses within health insurance claims and other large datasets have hindered efforts to study and monitor care at the population level. Objectives: To develop and validate prediction models using longitudinal Medicare administrative data to identify patients with actual epilepsy among those with the diagnosis. Research Design, Subjects, Measures: We used linked electronic health records and Medicare administrative data including claims to predict epilepsy status. A neurologist reviewed electronic health record data to assess epilepsy status in a stratified random sample of Medicare beneficiaries aged 65+ years between January 2012 and December 2014. We then reconstructed the full sample using inverse probability sampling weights. We developed prediction models using longitudinal Medicare data, then in a separate sample evaluated the predictive performance of each model, for example, area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity. Results: Of 20,945 patients in the reconstructed sample, 2.1% had confirmed epilepsy. The best-performing prediction model to identify prevalent epilepsy required epilepsy diagnoses with multiple claims at least 60 days apart, and epilepsy-specific drug claims: AUROC=0.93 [95% confidence interval (CI), 0.90-0.96], and with an 80% diagnostic threshold, sensitivity=87.8% (95% CI, 80.4%-93.2%), specificity= 98.4% (95% CI, 98.2%-98.5%). A similar model also performed well in predicting incident epilepsy (k=0.79; 95% CI, 0.66-0.92). Conclusions: Prediction models using longitudinal Medicare data perform well in predicting incident and prevalent epilepsy status accurately.
引用
收藏
页码:318 / 324
页数:7
相关论文
共 30 条
[1]   Risk of recurrence after a first unprovoked seizure [J].
Berg, Anne T. .
EPILEPSIA, 2008, 49 :13-18
[2]   Trends in Status Epilepticus-Related Hospitalizations and Mortality Redefined in US Practice Over Time [J].
Betjemann, John P. ;
Josephson, S. Andrew ;
Lowenstein, Daniel H. ;
Burke, James F. .
JAMA NEUROLOGY, 2015, 72 (06) :650-655
[3]   Predictors of incident epilepsy in older adults The Cardiovascular Health Study [J].
Choi, Hyunmi ;
Pack, Alison ;
Elkind, Mitchell S. V. ;
Longstreth, W. T., Jr. ;
Ton, Thanh G. N. ;
Onchiri, Frankline .
NEUROLOGY, 2017, 88 (09) :870-877
[4]   A guide to systematic review and meta-analysis of prediction model performance [J].
Debray, Thomas P. A. ;
Damen, Johanna A. A. G. ;
Snell, Kym I. E. ;
Ensor, Joie ;
Hooft, Lotty ;
Reitsma, Johannes B. ;
Riley, Richard D. ;
Moons, Karel G. M. .
BMJ-BRITISH MEDICAL JOURNAL, 2017, 356
[5]   Incidence and prevalence of epilepsy among older US Medicare beneficiaries [J].
Faught, E. ;
Richman, J. ;
Martin, R. ;
Funkhouser, E. ;
Foushee, R. ;
Kratt, P. ;
Kim, Y. ;
Clements, K. ;
Cohen, N. ;
Adoboe, D. ;
Knowlton, R. ;
Pisu, M. .
NEUROLOGY, 2012, 78 (07) :448-453
[6]   Prevalence and incidence of epilepsy A systematic review and meta-analysis of international studies [J].
Fiest, Kirsten M. ;
Sauro, Khara M. ;
Wiebe, Samuel ;
Patten, Scott B. ;
Kwon, Churl-Su ;
Dykeman, Jonathan ;
Pringsheim, Tamara ;
Lorenzetti, Diane L. ;
Jette, Nathalie .
NEUROLOGY, 2017, 88 (03) :296-303
[7]   Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology [J].
Fisher, Robert S. ;
Cross, J. Helen ;
French, Jacqueline A. ;
Higurashi, Norimichi ;
Hirsch, Edouard ;
Jansen, Floor E. ;
Lagae, Lieven ;
Moshe, Solomon L. ;
Peltola, Jukka ;
Roulet Perez, Eliane ;
Scheffer, Ingrid E. ;
Zuberi, Sameer M. .
EPILEPSIA, 2017, 58 (04) :522-530
[8]   Validating epilepsy diagnoses in routinely collected data [J].
Fonferko-Shadrach, Beata ;
Lacey, Arron S. ;
White, Catharine P. ;
Powell, H. W. Rob ;
Sawhney, Inder M. S. ;
Lyons, Ronan A. ;
Smith, Phil E. M. ;
Kerr, Mike P. ;
Rees, Mark I. ;
Pickrell, W. Owen .
SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2017, 52 :195-198
[9]   Validation of healthcare administrative data for the diagnosis of epilepsy [J].
Franchi, C. ;
Giussani, G. ;
Messina, P. ;
Montesano, M. ;
Romi, S. ;
Nobili, A. ;
Fortino, I. ;
Bortolotti, A. ;
Merlino, L. ;
Beghi, E. .
JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH, 2013, 67 (12) :1019-1024
[10]   Estimating prevalence, incidence, and disease-related mortality for patients with epilepsy in managed care organizations [J].
Holden, EW ;
Nguyen, HT ;
Grossman, E ;
Robinson, S ;
Nelson, LS ;
Gunter, MJ ;
Von Worley, A ;
Thurman, DJ .
EPILEPSIA, 2005, 46 (02) :311-319