Recently, a special nonhomogeneous Poisson process known as the Weibull process has been proposed by C-H. Ho for fitting historical volcanic eruptions. Revisiting this model, we learn that it possesses some undesirable features which make it an unsatisfactory tool in this context. We then consider the entire question of a nonstationary model in the light of availability and complete,less of data. In our view, a nonstationary model is unnecessary and perhaps undesirable. We propose the Weibull renewal process as an alternative to the simple (homogeneous) Poisson process. For a renewal process the interevent rimes are independent and distributed identically with distribution function F where, in the Weibull renewal process, F has the Weibull distribution, which has the exponential as a special situation. Testing for a Weibull distribution can be achieved by testing for exponentiality of the data under a simple transformation. Another alternative considered is the lognormal distribution for F. Whereas the homogeneous Poisson process represents purely random (memoryless) occurrences, the lognormal distribution corresponds to periodic behavior and the Weibull distribution encompasses both periodicity and clustering, which aids us in characterizing the volcano. Data from the same volcanoes considered by Ho were analyzed again and we determined there is no reason to reject the hypothesis of Weibull interevent times although the lognormal interevent times were nor supported Prediction intervals for the next event are compared with Ho's nonhomogeneous model and the Weibull renewal process seems to produce more plausible results.