A new method for optimal parameters identification of a PEMFC using an improved version of Monarch Butterfly Optimization Algorithm

被引:61
作者
Bao, Songjian [1 ]
Ebadi, Abdolghaffar [2 ]
Toughani, Mohsen [3 ]
Dalle, Juhriyansyah [4 ]
Maseleno, Andino [5 ]
Baharuddin [6 ]
Yildizbasi, Abdullah [7 ]
机构
[1] Chongqing Univ Arts & Sci, Dept Elect Engn, Sch Elect Informat & Elect Engn, Chongqing 402160, Peoples R China
[2] Islamic Azad Univ, Jouybar Branch, Dept Agr, Jouybar, Iran
[3] Islamic Azad Univ, Babol Branch, Dept Fishery, Babol Sar, Iran
[4] Univ Lambung Mangkurat, Dept Informat Technol, Banjarmasin 70123, Indonesia
[5] STMIK Pringsewu, Lampung, Indonesia
[6] Univ Negeri Medan, Dept Elect Engn Educ, North Sumatera, Indonesia
[7] Ankara Yildirim Beyazit Univ AYBU, Dept Ind Engn, TR-06010 Ankara, Turkey
关键词
Parameter identification; Proton exchange membrane fuel; Monarch Butterfly Optimization; Improved; Circuit-based model; Integral time absolute error; MULTIOBJECTIVE OPTIMIZATION; CHAOS OPTIMIZATION; FEATURE-SELECTION; FORECAST ENGINE; FUEL; PREDICTION; MANAGEMENT; MODEL; CHP;
D O I
10.1016/j.ijhydene.2020.04.256
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, a circuit-based model of proton exchange membrane fuel cell (PEMFC) is developed for optimal selection of the model parameters. The optimization is based on using an improved version of Monarch Butterfly Optimization (IMBO) algorithm for minimizing the Integral Time Absolute Error between the measured output voltage and the output voltage of the achieved model. For validation of the proposed method, two different case studies including 6 kW NedSstack PS6 and 2 kW Nexa FC PEMFC stacks have been employed and the results have been compared with the experimental data and some well-known metaheuristics including Chaotic Grasshopper Optimization Algorithm (CGOA), Grass Fibrous Root Optimization Algorithm (GRA), and basic Monarch Butterfly Optimization (MBO) to indicate the superiority of the proposed method against the compared methods. Final results show a satisfying agreement between the proposed IMBO and the experimental data. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:17882 / 17892
页数:11
相关论文
共 42 条
[1]   Multi-objective energy management in a micro-grid [J].
Aghajani, Gholamreza ;
Ghadimi, Noradin .
ENERGY REPORTS, 2018, 4 :218-225
[2]   Extracting Appropriate Nodal Marginal Prices for All Types of Committed Reserve [J].
Akbary, Paria ;
Ghiasi, Mohammad ;
Pourkheranjani, Mohammad Reza Rezaie ;
Alipour, Hamidreza ;
Ghadimi, Noradin .
COMPUTATIONAL ECONOMICS, 2019, 53 (01) :1-26
[3]  
Akkar Hanan A. R., 2017, International Journal of Intelligent Systems and Applications, V9, P15, DOI 10.5815/ijisa.2017.06.02
[4]   Learning automata-based butterfly optimization algorithm for engineering design problems [J].
Arora, Sankalap ;
Anand, Priyanka .
INTERNATIONAL JOURNAL OF COMPUTATIONAL MATERIALS SCIENCE AND ENGINEERING, 2018, 7 (04)
[5]   Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm [J].
Cao, Yan ;
Li, Yiqing ;
Zhang, Geng ;
Jermsittiparsert, Kittisak ;
Razmjooy, Navid .
ENERGY REPORTS, 2019, 5 :1616-1625
[6]   Multi-objective optimization of a PEMFC based CCHP system by meta-heuristics [J].
Cao, Yan ;
Wu, Yujia ;
Fu, Leijie ;
Jermsittiparsert, Kittisak ;
Razmjooy, Navid .
ENERGY REPORTS, 2019, 5 :1551-1559
[7]   A powerful variant of symbiotic organisms search algorithm for global optimization [J].
Celik, Emre .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 87
[8]   Multiphysics DC and AC models of a PEMFC for the detection of degraded cell parameters [J].
Chevalier, S. ;
Trichet, D. ;
Auvity, B. ;
Olivier, J. C. ;
Josset, C. ;
Machmoum, M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (26) :11609-11618
[9]   Experimental and modelling studies of low temperature PEMFC performance [J].
Chugh, Sachin ;
Chaudhari, Chinmay ;
Sonkar, Kapil ;
Sharma, Alok ;
Kapur, G. S. ;
Ramakumar, S. S., V .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (15) :8866-8874
[10]   Robust LPV Model-Based Sensor Fault Diagnosis and Estimation for a PEM Fuel Cell System [J].
de Lira, S. ;
Puig, V. ;
Quevedo, J. .
2010 CONFERENCE ON CONTROL AND FAULT-TOLERANT SYSTEMS (SYSTOL'10), 2010, :819-824