Broadband absorption enhancement in ultra-thin crystalline Si solar cells by incorporating metallic and dielectric nanostructures in the back reflector

被引:13
作者
Jain, Samarth [1 ]
Depauw, Valerie [1 ]
Miljkovic, Vladimir D. [2 ]
Dmitriev, Alexander [2 ]
Trompoukis, Christos [1 ]
Gordon, Ivan [1 ]
Van Dorpe, Pol [1 ]
El Daif, Ounsi [1 ]
机构
[1] IMEC, PV, Leuven, Belgium
[2] Chalmers, Gottenburg, Sweden
来源
PROGRESS IN PHOTOVOLTAICS | 2015年 / 23卷 / 09期
关键词
plasmons; solar cells; optics; crystalline silicon; nanoparticles; PLASMONICS;
D O I
10.1002/pip.2533
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We propose a back reflecting scheme in order to enhance the maximum achievable current in one micron thick crystalline silicon solar cells. We perform 3D numerical investigations of the scattering properties of metallic nanostructures located at the back side and optimize them for enhancing absorption in the silicon layer. We validate our numerical results experimentally and also compare the absorption enhancement in the solar cell structure, both with quasi-periodic and random metallic nanostructures. We have looked at the interplay between the metallic nanostructures and an integrated back reflector. We show that the combination of metallic nanoparticles and a metallic reflector results in significant parasitic absorption. We compared this to another implementation based on titanium dioxide nanoparticles, which act as a Lambertian reflector of light. Our simulation and experimental results show that this proposed configuration results in reduced absorption losses and in broadband enhancement of absorption for ultra-thin solar cells, paving the way to an optimal back reflector for thin film photovoltaics. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:1144 / 1156
页数:13
相关论文
共 34 条
  • [1] Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
  • [2] Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles
    Beck, F. J.
    Mokkapati, S.
    Catchpole, K. R.
    [J]. PROGRESS IN PHOTOVOLTAICS, 2010, 18 (07): : 500 - 504
  • [3] Commercial white paint as back surface reflector for thin-film solar cells
    Berger, Olaf
    Inns, Daniel
    Aberle, Armin G.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (13) : 1215 - 1221
  • [4] LIGHT TRAPPING PROPERTIES OF PYRAMIDALLY TEXTURED SURFACES
    CAMPBELL, P
    GREEN, MA
    [J]. JOURNAL OF APPLIED PHYSICS, 1987, 62 (01) : 243 - 249
  • [5] Design principles for particle plasmon enhanced solar cells
    Catchpole, K. R.
    Polman, A.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (19)
  • [6] Catchpole KR, 2008, OPT EXPRESS, V16, P21793, DOI 10.1364/OE.16.021793
  • [7] Cotter JE, 1999, PROG PHOTOVOLTAICS, V7, P261, DOI 10.1002/(SICI)1099-159X(199907/08)7:4<261::AID-PIP256>3.0.CO
  • [8] 2-A
  • [9] Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells
    Depauw, V.
    Qiu, Y.
    Van Nieuwenhuysen, K.
    Gordon, I.
    Poortmans, J.
    [J]. PROGRESS IN PHOTOVOLTAICS, 2011, 19 (07): : 844 - 850
  • [10] Large-area monocrystalline silicon thin films by annealing of macroporous arrays: Understanding and tackling defects in the material
    Depauw, Valerie
    Gordon, Ivan
    Beaucarne, Guy
    Poortmans, Jef
    Mertens, Robert
    Celis, Jean-Pierre
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 106 (03)