Rapid In Vitro Corrosion Induced by Crack-Like Pathway in Biodegradable Mg-10% Ca Alloy

被引:1
作者
Jung, Jae-Young [1 ]
Kwon, Sang-Jun [1 ]
Han, Hyung-Seop [2 ]
Yang, Gui Fu [2 ]
Lee, Ji-Young [2 ]
Yang, Seok-Jo [3 ]
Cho, Sung-Youn [4 ]
Cha, Pil-Ryung [5 ]
Kim, Young-Yul [6 ]
Kim, Yu-Chan [3 ]
Seok, Hyun-Kwang [3 ]
Ahn, Jae-Pyoung [1 ]
机构
[1] Korea Inst Sci & Technol, Adv Anal Ctr, Seoul 136791, South Korea
[2] Korea Inst Sci & Technol, Ctr Biomat, Seoul 136791, South Korea
[3] Chungnam Natl Univ, Dept Mechatron, Coll Engn, Taejon 305764, South Korea
[4] U&i Corp, R&D Ctr, Uijongbu 480761, Kyunggi Do, South Korea
[5] Kookmin Univ, Sch Adv Mat Engn, Seoul 137702, South Korea
[6] Catholic Univ Korea, St Marys Hosp, Dept Orthoped, Taejon 301723, South Korea
基金
新加坡国家研究基金会;
关键词
magnesium alloy; corrosion mechanism; in vitro; TEM; EELS; interdiffusion; crack-like pathway; MAGNESIUM ALLOYS; VIVO CORROSION; BIOMATERIALS; BONE;
D O I
10.1017/S1431927613012683
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The in vitro corrosion mechanism of the biodegradable cast Mg-10% Ca binary alloy in Hanks' solution was evaluated through transmission electron microscopy observations. The corrosion behavior depends strongly on the microstructural peculiarity of Mg2Ca phase surrounding the island-like primary Mg phase and the fast corrosion induced by the interdiffusion of O and Ca via the Mg2Ca phase of lamellar structure. At the corrosion front, we found that a nanosized crack-like pathway was formed along the interface between the Mg2Ca phase and the primary Mg phase. Through the crack-like pathway, O and Ca are atomically exchanged each other and then the corroded Mg2Ca phase was transformed to Mg oxides. The in vitro corrosion by the exchange of Ca and O at the nanosized pathway led to the rapid bulk corrosion in the Mg-Ca alloys.
引用
收藏
页码:210 / 214
页数:5
相关论文
共 10 条
[1]   A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate [J].
Gu, X. N. ;
Zheng, W. ;
Cheng, Y. ;
Zheng, Y. F. .
ACTA BIOMATERIALIA, 2009, 5 (07) :2790-2799
[2]   Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses [J].
Gu, Xuenan ;
Zheng, Yufeng ;
Zhong, Shengping ;
Xi, Tingfei ;
Wang, Junqiang ;
Wang, Weihua .
BIOMATERIALS, 2010, 31 (06) :1093-1103
[3]   In vivo corrosion mechanism by elemental interdiffusion of biodegradable Mg-Ca alloy [J].
Jung, Jae-Young ;
Kwon, Sang-Jun ;
Han, Hyung-Seop ;
Lee, Ji-Young ;
Ahn, Jae-Pyoung ;
Yang, Seok-Jo ;
Cho, Sung-Youn ;
Cha, Pil-Ryung ;
Kim, Yu-Chan ;
Seok, Hyun-Kwang .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2012, 100B (08) :2251-2260
[4]   In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid [J].
Kannan, M. Bobby ;
Raman, R. K. Singh .
BIOMATERIALS, 2008, 29 (15) :2306-2314
[5]   Influence of Ca on the corrosion properties of magnesium for biomaterials [J].
Kim, Woo-Cheol ;
Kim, Jung-Gu ;
Lee, Ji-Young ;
Seok, Hyun-Kwang .
MATERIALS LETTERS, 2008, 62 (25) :4146-4148
[6]   The development of binary Mg-Ca alloys for use as biodegradable materials within bone [J].
Li, Zijian ;
Gu, Xunan ;
Lou, Siquan ;
Zheng, Yufeng .
BIOMATERIALS, 2008, 29 (10) :1329-1344
[7]   Precipitation hardening of Mg-Ca(-Zn) alloys [J].
Nie, JF ;
Muddle, BC .
SCRIPTA MATERIALIA, 1997, 37 (10) :1475-1481
[8]   Magnesium and its alloys as orthopedic biomaterials: A review [J].
Staiger, MP ;
Pietak, AM ;
Huadmai, J ;
Dias, G .
BIOMATERIALS, 2006, 27 (09) :1728-1734
[9]   In vitro and in vivo corrosion measurements of magnesium alloys [J].
Witte, F ;
Fischer, J ;
Nellesen, J ;
Crostack, HA ;
Kaese, V ;
Pisch, A ;
Beckmann, F ;
Windhagen, H .
BIOMATERIALS, 2006, 27 (07) :1013-1018
[10]   In vivo corrosion of four magnesium alloys and the associated bone response [J].
Witte, F ;
Kaese, V ;
Haferkamp, H ;
Switzer, E ;
Meyer-Lindenberg, A ;
Wirth, CJ ;
Windhagen, H .
BIOMATERIALS, 2005, 26 (17) :3557-3563