Neural Networks for Web Server Workload Forecasting

被引:0
作者
Tran Van Giang
Debusschere, Vincent
Bacha, Seddik
机构
来源
2013 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT) | 2013年
关键词
Neural network; intelligent computational; server workload; data center workload forecasting; EnergeTIC-FUI;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a comparative study of five intelligent forecast models for workload of server defined as HTTP requests. These five forecast models are based on the methodology: Nonlinear AutoRegressive model with eXogenous Inputs (NARX), Multilayer Perceptron (MLP), Elman, Cascade-Neural Network (CCNN) and Pattern Recognition Neural Network (PRNN). The best accuracy prediction is given by the NARX model. This work takes parts in development of our forecast models in the project EnergeTic-FUI, France.
引用
收藏
页码:1152 / 1156
页数:5
相关论文
共 39 条
  • [1] Ahmad T., 2011, Proceedings of the 1st International Conference on Computer Networks and Information Technology (ICCNIT 2011), P87, DOI 10.1109/ICCNIT.2011.6020913
  • [2] Al Tamimi AK, 2008, IEEE INT SYM MULTIM, P178, DOI 10.1109/ISM.2008.112
  • [3] Amani P., 2011, Proceedings of the 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA), P813, DOI 10.1109/ISDA.2011.6121757
  • [4] [Anonymous], 2008, WSEAS Transactions on Computer Research
  • [5] [Anonymous], 2000, ADV TK CONT SIGN PRO
  • [6] [Anonymous], 2012, PATTERN RECOGNITION
  • [7] Beale MH., 2012, Neural Network Toolbox, User's guide
  • [8] Forecasting 802.11 Traffic using Seasonal ARIMA Model
    Chen, Chen
    Pei, Qingqi
    Ning, Lv
    [J]. 2009 INTERNATIONAL FORUM ON COMPUTER SCIENCE-TECHNOLOGY AND APPLICATIONS, VOL 2, PROCEEDINGS, 2009, : 347 - 350
  • [9] Cullen K.A, 1999, MASTER SCI AGR NATUR
  • [10] The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by electrocoagulation process
    Daneshvar, N.
    Khataee, A. R.
    Djafarzadeh, N.
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2006, 137 (03) : 1788 - 1795