Growth properties of Fourier transforms via moduli of continuity

被引:58
作者
Bray, William O. [1 ]
Pinsky, Mark A. [2 ]
机构
[1] Univ Maine, Dept Math & Stat, Orono, ME 04469 USA
[2] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
Symmetric space; Helgason Fourier transform; Spherical means; Bessel and Jacobi functions;
D O I
10.1016/j.jfa.2008.06.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain new inequalities for the Fourier transform, both on Euclidean space, and on non-compact, rank one symmetric spaces. In both cases these are expressed as a gauge on the size of the transform in terms of a suitable integral modulus of continuity of the function. In all settings, the results present a natural corollary: a quantitative form of the Riemann-Lebesgue lemma. A prototype is given in one-dimensional Fourier analysis. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2265 / 2285
页数:21
相关论文
共 23 条
[1]  
Anker J.-P., 1996, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, Ser, V23, P643
[2]  
BRAY WO, 1990, CONT MATH, V113, P17
[3]  
CHEBLI H, 1974, LECT NOTES MATH, V404
[4]   REGULARLY VARYING RATES OF DECREASE FOR MODULI OF CONTINUITY AND FOURIER-TRANSFORMS OF FUNCTIONS ON RD [J].
CLINE, DBH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 159 (02) :507-519
[5]   AN LP FOURIER-ANALYSIS ON SYMMETRIC-SPACES [J].
EGUCHI, M ;
KUMAHARA, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 47 (02) :230-246
[6]  
EGUCHI M, 1987, HIROSHIMA MATH J, V17, P67
[7]   CONVOLUTION STRUCTURE FOR JACOBI FUNCTION EXPANSIONS [J].
FLENSTEDJENSEN, M ;
KOORNWINDER, T .
ARKIV FOR MATEMATIK, 1973, 11 (02) :245-262
[8]  
Gangolli R., 1988, HARMONIC ANAL SPHERI
[9]  
Gioev D, 2008, CONTEMP MATH, V458, P377
[10]  
HELGASON S, 1994, MATH SURVEYS MONOGR, V39