WARPED CONVOLUTIONS: A NOVEL TOOL IN THE CONSTRUCTION OF QUANTUM FIELD THEORIES

被引:25
作者
Buchholz, Detlev [1 ]
Summers, Stephen J. [2 ]
机构
[1] Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
来源
QUANTUM FIELD THEORY AND BEYOND: ESSAYS IN HONOR OF WOLFHART ZIMMERMANN | 2008年
关键词
Quantum field theory; Constructive methods; Warped convolution;
D O I
10.1142/9789812833556_0007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, Grosse and Lechner introduced a novel deformation procedure for non-interacting quantum field theories, giving rise to interesting examples of wedge-localized quantum fields with a non-trivial scattering matrix. In the present article we outline all extension of this procedure to the general framework of quantum field theory by introducing the concept of warped convolutions: given a theory, this construction provides wedge-localized operators which commute at spacelike distances, transform covariantly under the underlying representation of the Poincare group and admit a scattering theory. The corresponding scattering matrix is nontrivial but breaks the Lorentz symmetry, in spite of the covariance and wedge-locality properties of the deformed operators.
引用
收藏
页码:107 / +
页数:2
相关论文
共 15 条
[1]   Polarization-free generators and the S-matrix [J].
Borchers, HJ ;
Buchholz, D ;
Schroer, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 219 (01) :125-140
[2]   Modular localization and Wigner particles [J].
Brunetti, R ;
Guido, D ;
Longo, R .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (7-8) :759-785
[3]   Stable quantum systems in anti-de Sitter space: Causality, independence, and spectral properties [J].
Buchholz, D ;
Summers, SJ .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (12) :4810-4831
[4]   Modular nuclearity and localization [J].
Buchholz, D ;
Lechner, G .
ANNALES HENRI POINCARE, 2004, 5 (06) :1065-1080
[5]   String- and brane-localized causal fields in a strongly nonlocal model [J].
Buchholz, Detlev ;
Summers, Stephen J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (09) :2147-2163
[6]   LOCAL ALGEBRAS OF OBSERVABLES AND POINTLIKE LOCALIZED FIELDS [J].
FREDENHAGEN, K ;
HERTEL, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 80 (04) :555-561
[7]  
GLIMM J., 1987, Quantum Physics. A functional integral point of view, V2nd
[8]  
GROSSE H, 2007, JHEP, V711
[9]  
Haag R., 1992, Local Quantum Physics
[10]  
HEPP K, 1966, BRANDEIS U SUMMER I, P135