Whole transcriptome RNA-Seq allelic expression in human brain

被引:44
|
作者
Smith, Ryan M. [1 ,2 ]
Webb, Amy [2 ,3 ]
Papp, Audrey C. [1 ,2 ]
Newman, Leslie C. [1 ,2 ]
Handelman, Samuel K. [1 ,2 ]
Suhy, Adam [1 ,2 ]
Mascarenhas, Roshan [1 ,2 ]
Oberdick, John [1 ,2 ,4 ]
Sadee, Wolfgang [1 ,2 ,5 ,6 ,7 ,8 ]
机构
[1] Ohio State Univ, Wexner Med Ctr, Dept Pharmacol, Program Pharmacogenom, Columbus, OH 43210 USA
[2] Ohio State Univ, Wexner Med Ctr, Coll Med, Columbus, OH 43210 USA
[3] Ohio State Univ, Wexner Med Ctr, Dept Biomed Informat, Program Pharmacogenom, Columbus, OH 43210 USA
[4] Ohio State Univ, Wexner Med Ctr, Dept Neurosci, Columbus, OH 43210 USA
[5] Ohio State Univ, Wexner Med Ctr, Coll Pharm & Environm Hlth Sci, Coll Med,Dept Pharmacol, Columbus, OH 43210 USA
[6] Ohio State Univ, Wexner Med Ctr, Coll Pharm & Environm Hlth Sci, Coll Med,Dept Psychiat, Columbus, OH 43210 USA
[7] Ohio State Univ, Wexner Med Ctr, Coll Pharm & Environm Hlth Sci, Coll Med,Dept Human Genet, Columbus, OH 43210 USA
[8] Ohio State Univ, Wexner Med Ctr, Coll Pharm & Environm Hlth Sci, Coll Med,Dept Internal Med, Columbus, OH 43210 USA
来源
BMC GENOMICS | 2013年 / 14卷
关键词
RNA-Seq; Whole transcriptome; Allele expression; mRNA expression; Functional genetics; Regulatory polymorphism; eQTL; Read alignment; Next generation sequencing; Bioinformatics; AFFECT GENE-EXPRESSION; GENOME-WIDE ANALYSIS; MESSENGER-RNA; NEURONAL DIFFERENTIATION; IMBALANCE; POLYMORPHISMS; IDENTIFICATION; MECHANISMS; CELLS; DNA;
D O I
10.1186/1471-2164-14-571
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Measuring allelic RNA expression ratios is a powerful approach for detecting cis-acting regulatory variants, RNA editing, loss of heterozygosity in cancer, copy number variation, and allele-specific epigenetic gene silencing. Whole transcriptome RNA sequencing (RNA-Seq) has emerged as a genome-wide tool for identifying allelic expression imbalance (AEI), but numerous factors bias allelic RNA ratio measurements. Here, we compare RNA-Seq allelic ratios measured in nine different human brain regions with a highly sensitive and accurate SNaPshot measure of allelic RNA ratios, identifying factors affecting reliable allelic ratio measurement. Accounting for these factors, we subsequently surveyed the variability of RNA editing across brain regions and across individuals. Results: We find that RNA-Seq allelic ratios from standard alignment methods correlate poorly with SNaPshot, but applying alternative alignment strategies and correcting for observed biases significantly improves correlations. Deploying these methods on a transcriptome-wide basis in nine brain regions from a single individual, we identified genes with AEI across all regions (SLC1A3, NHP2L1) and many others with region-specific AEI. In dorsolateral prefrontal cortex (DLPFC) tissues from 14 individuals, we found evidence for frequent regulatory variants affecting RNA expression in tens to hundreds of genes, depending on stringency for assigning AEI. Further, we find that the extent and variability of RNA editing is similar across brain regions and across individuals. Conclusions: These results identify critical factors affecting allelic ratios measured by RNA-Seq and provide a foundation for using this technology to screen allelic RNA expression on a transcriptome-wide basis. Using this technology as a screening tool reveals tens to hundreds of genes harboring frequent functional variants affecting RNA expression in the human brain. With respect to RNA editing, the similarities within and between individuals leads us to conclude that this post-transcriptional process is under heavy regulatory influence to maintain an optimal degree of editing for normal biological function.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Whole transcriptome RNA-Seq allelic expression in human brain
    Ryan M Smith
    Amy Webb
    Audrey C Papp
    Leslie C Newman
    Samuel K Handelman
    Adam Suhy
    Roshan Mascarenhas
    John Oberdick
    Wolfgang Sadee
    BMC Genomics, 14
  • [2] A new method for stranded whole transcriptome RNA-seq
    Miller, David F. B.
    Yan, Pearlly S.
    Buechlein, Aaron
    Rodriguez, Benjamin A.
    Yilmaz, Ayse S.
    Goel, Shokhi
    Lin, Hai
    Collins-Burow, Bridgette
    Rhodes, Lyndsay V.
    Braun, Chris
    Pradeep, Sunila
    Rupaimoole, Rajesha
    Dalkilic, Mehmet
    Sood, Anil K.
    Burow, Matthew E.
    Tang, Haixu
    Huang, Tim H.
    Liu, Yunlong
    Rusch, Douglas B.
    Nephew, Kenneth P.
    METHODS, 2013, 63 (02) : 126 - 134
  • [3] RNA-SEQ ANALYSIS OF THE HUMAN ALCOHOLIC TRANSCRIPTOME
    Farris, S. P.
    Harris, R. A.
    Mayfield, R. D.
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2013, 37 : 126A - 126A
  • [4] RNA-SEQ ANALYSIS OF ALCOHOLIC GENE EXPRESSION IN HUMAN BRAIN
    Wall, J.
    Lee, C. -H.
    Arasappan, D.
    Mohan, D.
    Hunicke-Smith, S.
    Harris, R. A.
    Mayfield, R. D.
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2011, 35 (06) : 136A - 136A
  • [5] Whole Transcriptome Expression Profiling of Mouse Limb Tendon Development by Using RNA-Seq
    Liu, Han
    Xu, Jingyue
    Liu, Chia-Feng
    Lan, Yu
    Wylie, Christopher
    Jiang, Rulang
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2015, 33 (06) : 840 - 848
  • [6] Analyzing the Whole Transcriptome by RNA-Seq Data: The Tip of the Iceberg
    Angelini, Claudia
    Ciccodicola, Alfredo
    Costa, Valerio
    De Feis, Italia
    ERCIM NEWS, 2010, (82): : 16 - 17
  • [7] Whole transcriptome RNA-seq analysis: tumorigenesis and metastasis of melanoma
    Zhao, Hua
    Li, Yongjun
    Wang, Shaobin
    Yang, Yadong
    Wang, Junyun
    Ruan, Xiuyan
    Yang, Yaran
    Cai, Kan
    Zhang, Bing
    Cui, Peng
    Yan, Jiangwei
    Zhao, Yongliang
    Wakeland, Edward K.
    Li, Quanzhen
    Hu, Songnian
    Fang, Xiangdong
    GENE, 2014, 548 (02) : 234 - 243
  • [8] Optimizing Performance of Whole Transcriptome RNA-Seq Reference.
    Huang, Catherine
    Butler, Matthew G.
    Konigshofer, Yves
    Dickens, Jessica
    Vemula, Rajeswari
    Clement, Omoshile
    Anekella, Bharathi
    CANCER RESEARCH, 2021, 81 (13)
  • [9] Taming the Transcriptome with RNA-Seq
    Stein R.A.
    2018, Mary Ann Liebert Inc. (38): : 10 - 12
  • [10] RNA-seq dissects the transcriptome
    Genet. Eng. Biotechnol. News, 13 (20-22):