Extraction of nickel from NiFe-LDH into Ni2P@NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting

被引:295
作者
Zhang, Fang-Shuai [1 ]
Wang, Jia-Wei [1 ]
Luo, Jun [2 ]
Liu, Rui-Rui [2 ]
Zhang, Zhi-Ming [2 ]
He, Chun-Ting [1 ]
Lu, Tong-Bu [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Chem, MOE Key Lab Bioinorgan & Synthet Chem, Guangzhou 510275, Guangdong, Peoples R China
[2] Tianjin Univ Technol, Sch Mat Sci & Engn, Inst New Energy Mat & Low Carbon Technol, Tianjin 300384, Peoples R China
关键词
OXYGEN EVOLUTION REACTION; HYDROGEN EVOLUTION; HIGH-PERFORMANCE; GRAPHENE OXIDE; OXIDATION; NANOSHEETS; NANOPARTICLES; CATALYSTS; PHOSPHIDE; CARBIDE;
D O I
10.1039/c7sc04569g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of highly efficient, low-cost and stable electrocatalysts for overall water splitting is highly desirable for the storage of intermittent solar energy and wind energy sources. Herein, we show for the first time that nickel can be extracted from NiFe-layered double hydroxide (NiFe-LDH) to generate an Ni2P@FePOx heterostructure. The Ni2P@FePOx heterostructure was converted to an Ni2P@NiFe hydroxide heterostructure (P-NiFe) during water splitting, which displays high electrocatalytic performance for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1.0 M KOH solution, with an overpotential of 75 mV at 10 mA cm(-2) for HER, and overpotentials of 205, 230 and 430 mV at 10, 100 and 1000 mA cm(-2) for OER, respectively. Moreover, it could afford a stable current density of 10 mA cm(-2) for overall water splitting at 1.51 V in 1.0 M KOH with long-term durability (100 h). This cell voltage is among the best reported values for bifunctional electrocatalysts. The results of theoretical calculations demonstrate that P-NiFe displays optimized adsorption energies for both HER and OER intermediates at the nickel active sites, thus dramatically enhancing its electrocatalytic activity.
引用
收藏
页码:1375 / 1384
页数:10
相关论文
共 76 条
[1]  
[Anonymous], 2015, NAT COMMUN
[2]   Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water [J].
Bajdich, Michal ;
Garcia-Mota, Monica ;
Vojvodic, Aleksandra ;
Norskov, Jens K. ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (36) :13521-13530
[3]   Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation [J].
Bao, Jian ;
Zhang, Xiaodong ;
Fan, Bo ;
Zhang, Jiajia ;
Zhou, Min ;
Yang, Wenlong ;
Hu, Xin ;
Wang, Hui ;
Pan, Bicai ;
Xie, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (25) :7399-7404
[4]   Synthesis, Characterization, and Properties of Metal Phosphide Catalysts for the Hydrogen-Evolution Reaction [J].
Callejas, Juan F. ;
Read, Carlos G. ;
Roske, Christopher W. ;
Lewis, Nathan S. ;
Schaak, Raymond E. .
CHEMISTRY OF MATERIALS, 2016, 28 (17) :6017-6044
[5]   Efficient and Stable Bifunctional Electrocatalysts Ni/NixMy (M = P, S) for Overall Water Splitting [J].
Chen, Gao-Feng ;
Ma, Tian Yi ;
Liu, Zhao-Qing ;
Li, Nan ;
Su, Yu-Zhi ;
Davey, Kenneth ;
Qiao, Shi-Zhang .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (19) :3314-3323
[6]   Phase-Transformation Engineering in Cobalt Diselenide Realizing Enhanced Catalytic Activity for Hydrogen Evolution in an Alkaline Medium [J].
Chen, Pengzuo ;
Xu, Kun ;
Tao, Shi ;
Zhou, Tianpei ;
Tong, Yun ;
Ding, Hui ;
Zhang, Lidong ;
Chu, Wangsheng ;
Wu, Changzheng ;
Xie, Yi .
ADVANCED MATERIALS, 2016, 28 (34) :7527-7532
[7]   Metallic Co4N Porous Nanowire Arrays Activated by Surface Oxidation as Electrocatalysts for the Oxygen Evolution Reaction [J].
Chen, Pengzuo ;
Xu, Kun ;
Fang, Zhiwei ;
Tong, Yun ;
Wu, Junchi ;
Lu, Xiuli ;
Peng, Xu ;
Ding, Hui ;
Wu, Changzheng ;
Xie, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (49) :14710-14714
[8]   Aerogel Architectures Boost Oxygen-Evolution Performance of NiFe2Ox Spinels to Activity Levels Commensurate with Nickel-Rich Oxides [J].
Chervin, Christopher N. ;
DeSario, Paul A. ;
Parker, Joseph F. ;
Nelson, Eric S. ;
Miller, Bryan W. ;
Rolison, Debra R. ;
Long, Jeffrey W. .
CHEMELECTROCHEM, 2016, 3 (09) :1369-1375
[9]   Large-Scale Synthesis of Carbon-Shell-Coated FeP Nanoparticles for Robust Hydrogen Evolution Reaction Electrocatalyst [J].
Chung, Dong Young ;
Jun, Samuel Woojoo ;
Yoon, Gabin ;
Kim, Hyunjoong ;
Yoo, Ji Mun ;
Lee, Kug-Seung ;
Kim, Taehyun ;
Shin, Heejong ;
Sinha, Arun Kumar ;
Kwon, Soon Gu ;
Kang, Kisuk ;
Hyeon, Taeghwan ;
Sung, Yung-Eun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (19) :6669-6674