Conversion Reactions of Cadmium Chalcogenide Nanocrystal Precursors

被引:188
作者
Garcia-Rodriguez, Raul [1 ]
Hendricks, Mark P. [2 ]
Cossairt, Brandi M. [3 ]
Liu, Haitao [1 ]
Owen, Jonathan S. [2 ]
机构
[1] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA
[2] Columbia Univ, Dept Chem, New York, NY 10027 USA
[3] Univ Washington, Dept Chem, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
II-VI; quantum dot; precursor conversion; cadmium chalcogenide; mechanism; ONE-POT SYNTHESIS; LOW-TEMPERATURE SYNTHESIS; PHOSPHINE-FREE SYNTHESIS; CORE-SHELL NANOCRYSTALS; SIZED CDSE NANOCRYSTALS; HIGH-QUALITY CDTE; QUANTUM DOTS; HIGHLY LUMINESCENT; OPTICAL-PROPERTIES; CORE/SHELL NANOCRYSTALS;
D O I
10.1021/cm3035642
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We survey the chemical reactions between common precursors used in the synthesis of metal chalcogenide nano crystals and outline how they affect the mechanism and kinetics of nanocrystal growth. We emphasize syntheses of cadmium selenide and cadmium sulfide where a variety of metal and chalcogenide precursors have been explored, though this is supplemented by studies of zinc and lead chalcogenide formation where appropriate. This review is organized into three sections, highlighting kinetics, metal precursors, and chalcogenide precursors, respectively. Section I is dedicated to the role of precursor conversion as a source of monomers and the importance of the supply rate on nanocrystal nucleation and growth. Section II describes the structure and reactivity of cadmium carboxylates, phosphonates, and chalcogenolates. Section III describes the reaction chemistry of commonly employed chalcogenide precursors and the mechanisms by which they react with metal precursors.
引用
收藏
页码:1233 / 1249
页数:17
相关论文
共 262 条
[41]   Synthesis of Metal-Selenide Nanocrystals Using Selenium Dioxide as the Selenium Precursor [J].
Chen, Ou ;
Chen, Xian ;
Yang, Yongan ;
Lynch, Jared ;
Wu, Huimeng ;
Zhuang, Jiaqi ;
Cao, Y. Charles .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (45) :8638-8641
[42]   Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network [J].
Chen, XJ ;
Xu, HF ;
Xu, NS ;
Zhao, FH ;
Lin, WJ ;
Lin, G ;
Fu, YL ;
Huang, ZL ;
Wang, HZ ;
Wu, MM .
INORGANIC CHEMISTRY, 2003, 42 (09) :3100-3106
[43]   Synthesis of a ZnS Shell on the ZnO Nanowire and Its Effect on the Nanowire-Based Dye-Sensitized Solar Cells [J].
Chung, Jooyoung ;
Myoung, Jihyun ;
Oh, Jisook ;
Lim, Sangwoo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (49) :21360-21365
[44]   Focusing Nanocrystal Size Distributions via Production Control [J].
Clark, Michael D. ;
Kumar, Sanat K. ;
Owen, Jonathan S. ;
Chan, Emory M. .
NANO LETTERS, 2011, 11 (05) :1976-1980
[45]  
Clearfield A, 2012, METAL PHOSPHONATE CHEMISTRY: FROM SYNTHESIS TO APPLICATIONS, P1, DOI 10.1039/9781849733571
[46]   DEHALOGENATION OF ALPHA-CHLORO AND ALPHA-BROMO KETONES - USE OF SODIUM O,O-DIETHYL PHOSPHOROTELLUROATE [J].
CLIVE, DLJ ;
BEAULIEU, PL .
JOURNAL OF ORGANIC CHEMISTRY, 1982, 47 (06) :1124-1126
[47]   Chemistry of the vulcanization and protection of elastomers: A review of the achievements [J].
Coran, AY .
JOURNAL OF APPLIED POLYMER SCIENCE, 2003, 87 (01) :24-30
[48]   Metal Chalcogenide Clusters on the Border between Molecules and Materials [J].
Corrigan, John F. ;
Fuhr, Olaf ;
Fenske, Dieter .
ADVANCED MATERIALS, 2009, 21 (18) :1867-1871
[49]   CdSe Clusters: At the Interface of Small Molecules and Quantum Dots [J].
Cossairt, Brandi M. ;
Owen, Jonathan S. .
CHEMISTRY OF MATERIALS, 2011, 23 (12) :3114-3119
[50]   Synthesis, properties and perspectives of hybrid nanocrystal structures [J].
Cozzoli, Pantaleo Davide ;
Pellegrino, Teresa ;
Manna, Liberato .
CHEMICAL SOCIETY REVIEWS, 2006, 35 (11) :1195-1208