On the Better Performance of Pianists with Motor Imagery-Based Brain-Computer Interface Systems

被引:14
|
作者
Riquelme-Ros, Jose-Vicente [1 ]
Rodriguez-Bermudez, German [2 ]
Rodriguez-Rodriguez, Ignacio [3 ]
Rodriguez, Jose-Victor [4 ]
Molina-Garcia-Pardo, Jose-Maria [4 ]
机构
[1] Consejeria Educ & Cultura Reg Murcia, E-30003 Murcia, Spain
[2] Univ Politecn Cartagena, Univ Ctr Def, San Javier Air Force Base, Minist Def, E-30720 Santiago De La Ribera, Spain
[3] Univ Malaga, Dept Ingn Comunicac, ATIC Res Grp, E-29071 Malaga, Spain
[4] Univ Politecn Cartagena, Dept Tecnol Informac & Comunicac, E-30202 Cartagena, Spain
关键词
brain-computer interface; motor imagery; machine learning; internet of things; pianists; MUSICIANS BRAIN; PIANO PLAYERS; EEG; MODULATION; PLASTICITY; TASKS; BCI; MU;
D O I
10.3390/s20164452
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Motor imagery (MI)-based brain-computer interface (BCI) systems detect electrical brain activity patterns through electroencephalogram (EEG) signals to forecast user intention while performing movement imagination tasks. As the microscopic details of individuals' brains are directly shaped by their rich experiences, musicians can develop certain neurological characteristics, such as improved brain plasticity, following extensive musical training. Specifically, the advanced bimanual motor coordination that pianists exhibit means that they may interact more effectively with BCI systems than their non-musically trained counterparts; this could lead to personalized BCI strategies according to the users' previously detected skills. This work assessed the performance of pianists as they interacted with an MI-based BCI system and compared it with that of a control group. The Common Spatial Patterns (CSP) and Linear Discriminant Analysis (LDA) machine learning algorithms were applied to the EEG signals for feature extraction and classification, respectively. The results revealed that the pianists achieved a higher level of BCI control by means of MI during the final trial (74.69%) compared to the control group (63.13%). The outcome indicates that musical training could enhance the performance of individuals using BCI systems.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [31] A Predictive Speller Controlled by a Brain-Computer Interface Based on Motor Imagery
    D'Albis, Tiziano
    Blatt, Rossella
    Tedesco, Roberto
    Sbattella, Licia
    Matteucci, Matteo
    ACM TRANSACTIONS ON COMPUTER-HUMAN INTERACTION, 2012, 19 (03)
  • [32] Electroencephalography-Based Brain-Computer Interface Motor Imagery Classification
    Mohammadi, Ehsan
    Daneshmand, Parisa Ghaderi
    Khorzooghi, Seyyed Mohammad Sadegh Moosavi
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2022, 12 (01): : 40 - 47
  • [33] Estimating the Hurst Exponent in Motor Imagery-based Brain Computer Interface
    Aldea, Roxana
    Tarniceriu, Daniela
    2013 7TH CONFERENCE ON SPEECH TECHNOLOGY AND HUMAN - COMPUTER DIALOGUE (SPED), 2013,
  • [34] Distinguishable spatial-spectral feature learning neural network framework for motor imagery-based brain-computer interface
    Liu, Chang
    Jin, Jing
    Xu, Ren
    Li, Shurui
    Zuo, Cili
    Sun, Hao
    Wang, Xingyu
    Cichocki, Andrzej
    JOURNAL OF NEURAL ENGINEERING, 2021, 18 (04)
  • [35] Closed-Loop Phase-Dependent Vibration Stimulation Improves Motor Imagery-Based Brain-Computer Interface Performance
    Zhang, Wenbin
    Song, Aiguo
    Zeng, Hong
    Xu, Baoguo
    Miao, Minmin
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [36] A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection
    Lo, Chi-Chun
    Chien, Tsung-Yi
    Chen, Yu-Chun
    Tsai, Shang-Ho
    Fang, Wai-Chi
    Lin, Bor-Shyh
    SENSORS, 2016, 16 (02):
  • [37] SOURCES OF EEG ACTIVITY MOST RELEVANT TO PERFORMANCE OF BRAIN-COMPUTER INTERFACE BASED ON MOTOR IMAGERY
    Frolov, Alexander
    Husek, Dusan
    Bobrov, Pavel
    Korshakov, Alexey
    Chernikova, Lyudmila
    Konovalov, Rodion
    Mokienko, Olesya
    NEURAL NETWORK WORLD, 2012, 22 (01) : 21 - 37
  • [38] Online processing for motor imagery-based brain-computer interfaces relying on EEG
    Arpaia, Pasquale
    Esposito, Antonio
    Moccaldi, Nicola
    Natalizio, Angela
    Parvis, Marco
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,
  • [39] Hierarchical Transformer for Motor Imagery-Based Brain Computer Interface
    Deny, Permana
    Cheon, Saewon
    Son, Hayoung
    Choi, Kae Won
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (11) : 5459 - 5470
  • [40] A clinical study of motor imagery-based brain-computer interface for upper limb robotic rehabilitation
    Ang, Kai Keng
    Guan, Cuntai
    Chua, Karen Sui Geok
    Ang, Beng Ti
    Kuah, Christopher
    Wang, Chuanchu
    Phua, Kok Soon
    Chin, Zheng Yang
    Zhang, Haihong
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 5981 - +