Highly Efficient and Stable Perovskite Solar Cells via Modification of Energy Levels at the Perovskite/Carbon Electrode Interface

被引:225
|
作者
Wu, Zhifang [1 ]
Liu, Zonghao [1 ]
Hu, Zhanhao [1 ]
Hawash, Zafer [1 ]
Qiu, Longbin [1 ]
Jiang, Yan [1 ]
Ono, Luis K. [1 ]
Qi, Yabing [1 ]
机构
[1] Grad Univ OIST, Okinawa Inst Sci & Technol, EMSSU, 1919-1 Tancha, Onna, Okinawa 9040495, Japan
关键词
carbon electrode; energy level alignment; perovskite solar cells; poly(ethylene oxide); stability; CH3NH3PBI3; PEROVSKITE; PERFORMANCE; DEGRADATION; PRINCIPLES; STABILITY; LAYER; NIO;
D O I
10.1002/adma.201804284
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Perovskite solar cells (PSCs) have attracted great attention in the past few years due to their rapid increase in efficiency and low-cost fabrication. How-ever, instability against thermal stress and humidity is a big issue hindering their commercialization and practical applications. Here, by combining thermally stable formamidinium-cesium-based perovskite and a moisture-resistant carbon electrode, successful fabrication of stable PSCs is reported, which maintain on average 77% of the initial value after being aged for 192 h under conditions of 85 degrees C and 85% relative humidity (the "double 85" aging condition) without encapsulation. However, the mismatch of energy levels at the interface between the perovskite and the carbon electrode limits charge collection and leads to poor device performance. To address this issue, a thin-layer of poly(ethylene oxide) (PEO) is introduced to achieve improved interfacial energy level alignment, which is verified by ultraviolet photoemission spectroscopy measurements. Indeed as a result, power conversion efficiency increases from 12.2% to 14.9% after suitable energy level modification by intentionally introducing a thin layer of PEO at the perovskite/carbon interface.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Modification of energy levels by cetyltrimethylammonium bromide at the perovskite/carbon interface for highly efficient and stable perovskite solar cells
    Shi, Zhuonan
    Li, Shina
    Min, Changli
    Xie, Junjie
    Ma, Ruixin
    ORGANIC ELECTRONICS, 2023, 112
  • [2] Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells
    Zhao, Chenxu
    Zhang, Hong
    Krishna, Anurag
    Xu, Jia
    Yao, Jianxi
    ADVANCED OPTICAL MATERIALS, 2024, 12 (07)
  • [3] Interface Modification of a Perovskite/Hole Transport Layer with Tetraphenyldibenzoperiflanthene for Highly Efficient and Stable Solar Cells
    Li, Shiqi
    Wu, Yukun
    Zhang, Chenxi
    Liu, Yifan
    Sun, Qinjun
    Cui, Yanxia
    Liu, Shengzhong Frank
    Hao, Yuying
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (40) : 45073 - 45082
  • [4] Recent Progress of Critical Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells
    Li, Yahong
    Xie, Haibing
    Lim, Eng Liang
    Hagfeldt, Anders
    Bi, Dongqin
    ADVANCED ENERGY MATERIALS, 2022, 12 (05)
  • [5] Lead Acetate Assisted Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells
    Zhang, Yuanyuan
    Ma, Yongchao
    Shin, Insoo
    Jung, Yun Kyung
    Lee, Bo Ram
    Wu, Sangwook
    Jeong, Jung Hyun
    Lee, Byoung Hoon
    Kim, Joo Hyun
    Kim, Kwang Ho
    Park, Sung Heum
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (06) : 7186 - 7197
  • [6] Highly Efficient and Stable Perovskite Solar Cells based on a Low-Cost Carbon Cloth
    Gholipour, Somayeh
    Correa-Baena, Juan-Pablo
    Domanski, Konrad
    Matsui, Taisuke
    Steier, Ludmilla
    Giordano, Fabrizio
    Tajabadi, Fariba
    Tress, Wolfgang
    Saliba, Michael
    Abate, Antonio
    Ali, Abdollah Morteza
    Taghavinia, Nima
    Graetzel, Michael
    Hagfeldt, Anders
    ADVANCED ENERGY MATERIALS, 2016, 6 (20)
  • [7] Constructing Efficient and Stable Perovskite Solar Cells via Interconnecting Perovskite Grains
    Hou, Xian
    Huang, Sumei
    Wei Ou-Yang
    Pan, Likun
    Sun, Zhuo
    Chen, Xiaohong
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (40) : 35200 - 35208
  • [8] Interfacial Modification of NiOx for Highly Efficient and Stable Inverted Perovskite Solar Cells
    Zhou, Yu
    Huang, Xiaozhen
    Zhang, Jinsen
    Zhang, Lin
    Wu, Haotian
    Zhou, Ying
    Wang, Yao
    Wang, Yang
    Fu, Weifei
    Chen, Hongzheng
    ADVANCED ENERGY MATERIALS, 2024, 14 (25)
  • [9] NiOx Nanocrystals with Tunable Size and Energy Levels for Efficient and UV Stable Perovskite Solar Cells
    Cui, Xiaxia
    Jin, Junjun
    Zou, Junjie
    Tang, Qiang
    Ai, Yuan
    Zhang, Xiang
    Wang, Zhen
    Zhou, Yuan
    Zhu, Zhenkun
    Tang, Guanqi
    Cao, Qiang
    Liu, Sheng
    Liu, Xiaowei
    Tai, Qidong
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (31)
  • [10] NiO/Perovskite Heterojunction Contact Engineering for Highly Efficient and Stable Perovskite Solar Cells
    Zhang, Bingjuan
    Su, Jie
    Guo, Xing
    Zhou, Long
    Lin, Zhenhua
    Feng, Liping
    Zhang, Jincheng
    Chang, Jingjing
    Hao, Yue
    ADVANCED SCIENCE, 2020, 7 (11)