Entanglement verification and steering when Alice and Bob cannot be trusted

被引:60
作者
Cavalcanti, Eric G. [1 ,2 ]
Hall, Michael J. W. [3 ]
Wiseman, Howard M. [3 ]
机构
[1] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[2] Univ Oxford, Dept Comp Sci, Quantum Grp, Oxford OX1 3QD, England
[3] Griffith Univ, Ctr Quantum Dynam, Australian Res Council, Ctr Quantum Computat & Commun Technol, Brisbane, Qld 4111, Australia
来源
PHYSICAL REVIEW A | 2013年 / 87卷 / 03期
关键词
D O I
10.1103/PhysRevA.87.032306
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Various protocols exist by which a referee can be convinced that two observers share an entangled resource. Such protocols typically specify the types of communication allowed, and the degrees of trust required, between the referee and each observer. Here it is shown that the need for any degree of trust of the observers by the referee can be completely removed via the referee using classical and quantum communication channels appropriately. In particular, trust-free verification of Bell nonlocality, Einstein-Podolsky-Rosen steering, and entanglement, respectively, requires two classical channels, one classical and one quantum channel, and two quantum channels. These channels correspond to suitable inputs of quantum randomness by the referee, which prevent the observers from mimicking entanglement using shared classical randomness. Our results generalize recent work by Buscemi [Phys. Rev. Lett. 108, 200401 (2012)], and offer a perspective on the operational significance of that work. They also offer the possibility of simpler experimental demonstrations of the basic idea of quantum-refereed nonlocality tests. DOI: 10.1103/PhysRevA.87.032306
引用
收藏
页数:8
相关论文
共 30 条
[1]  
[Anonymous], 2001, JOHN S BELL FDN QUAN
[2]  
Bell J. S., 1964, Physics, V1, P195, DOI [10.1103/physicsphysiquefizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
[3]   Arbitrarily Loss-Tolerant Einstein-Podolsky-Rosen Steering Allowing a Demonstration over 1 km of Optical Fiber with No Detection Loophole [J].
Bennet, A. J. ;
Evans, D. A. ;
Saunders, D. J. ;
Branciard, C. ;
Cavalcanti, E. G. ;
Wiseman, H. M. ;
Pryde, G. J. .
PHYSICAL REVIEW X, 2012, 2 (03)
[4]   Measurement-Device-Independent Entanglement Witnesses for All Entangled Quantum States [J].
Branciard, Cyril ;
Rosset, Denis ;
Liang, Yeong-Cherng ;
Gisin, Nicolas .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[5]   One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering [J].
Branciard, Cyril ;
Cavalcanti, Eric G. ;
Walborn, Stephen P. ;
Scarani, Valerio ;
Wiseman, Howard M. .
PHYSICAL REVIEW A, 2012, 85 (01)
[6]   All Entangled Quantum States Are Nonlocal [J].
Buscemi, Francesco .
PHYSICAL REVIEW LETTERS, 2012, 108 (20)
[7]   Unified criteria for multipartite quantum nonlocality [J].
Cavalcanti, E. G. ;
He, Q. Y. ;
Reid, M. D. ;
Wiseman, H. M. .
PHYSICAL REVIEW A, 2011, 84 (03)
[8]   Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox [J].
Cavalcanti, E. G. ;
Jones, S. J. ;
Wiseman, H. M. ;
Reid, M. D. .
PHYSICAL REVIEW A, 2009, 80 (03)
[9]   Consequences and limits of nonlocal strategies [J].
Cleve, R ;
Hoyer, P ;
Toner, B ;
Watrous, J .
19TH IEEE ANNUAL CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2004, :236-249
[10]   Necessary and Sufficient Condition for Nonzero Quantum Discord [J].
Dakic, Borivoje ;
Vedral, Vlatko ;
Brukner, Caslav .
PHYSICAL REVIEW LETTERS, 2010, 105 (19)