Analysis of deep learning methods for blind protein contact prediction in CASP12

被引:61
作者
Wang, Sheng [1 ]
Sun, Siqi [1 ]
Xu, Jinbo [1 ]
机构
[1] Toyota Technol Inst, 6045 S Kenwood Ave, Chicago, IL 60637 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
protein folding; protein contact prediction; CASP; deep learning; coevolution analysis; RESIDUE-RESIDUE CONTACTS; SEQUENCE; EVOLUTIONARY;
D O I
10.1002/prot.25377
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Here we present the results of protein contact prediction achieved in CASP12 by our RaptorX-Contact server, which is an early implementation of our deep learning method for contact prediction. On a set of 38 free-modeling target domains with a median family size of around 58 effective sequences, our server obtained an average top L/5 long- and medium-range contact accuracy of 47% and 44%, respectively (L=length). A complete implementation has an average accuracy of 59% and 57%, respectively. Our deep learning method formulates contact prediction as a pixel-level image labeling problem and simultaneously predicts all residue pairs of a protein using a combination of two deep residual neural networks, taking as input the residue conservation information, predicted secondary structure and solvent accessibility, contact potential, and coevolution information. Our approach differs from existing methods mainly in (1) formulating contact prediction as a pixel-level image labeling problem instead of an image-level classification problem; (2) simultaneously predicting all contacts of an individual protein to make effective use of contact occurrence patterns; and (3) integrating both one-dimensional and two-dimensional deep convolutional neural networks to effectively learn complex sequence-structure relationship including high-order residue correlation. This paper discusses the RaptorX-Contact pipeline, both contact prediction and contact-based folding results, and finally the strength and weakness of our method.
引用
收藏
页码:67 / 77
页数:11
相关论文
共 50 条
  • [31] Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model
    Wang, Sheng
    Sun, Siqi
    Li, Zhen
    Zhang, Renyu
    Xu, Jinbo
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (01)
  • [32] Blind prediction of homo- and hetero-protein complexes: The CASP13-CAPRI experiment
    Lensink, Marc F.
    Brysbaert, Guillaume
    Nadzirin, Nurul
    Velankar, Sameer
    Chaleil, Raphael A. G.
    Gerguri, Tereza
    Bates, Paul A.
    Laine, Elodie
    Carbone, Alessandra
    Grudinin, Sergei
    Kong, Ren
    Liu, Ran-Ran
    Xu, Xi-Ming
    Shi, Hang
    Chang, Shan
    Eisenstein, Miriam
    Karczynska, Agnieszka
    Czaplewski, Cezary
    Lubecka, Emilia
    Lipska, Agnieszka
    Krupa, Pawel
    Mozolewska, Magdalena
    Golon, Lukasz
    Samsonov, Sergey
    Liwo, Adam
    Crivelli, Silvia
    Pages, Guillaume
    Karasikov, Mikhail
    Kadukova, Maria
    Yan, Yumeng
    Huang, Sheng-You
    Rosell, Mireia
    Rodriguez-Lumbreras, Luis A.
    Romero-Durana, Miguel
    Diaz-Bueno, Lucia
    Fernandez-Recio, Juan
    Christoffer, Charles
    Terashi, Genki
    Shin, Woong-Hee
    Aderinwale, Tunde
    Maddhuri Venkata Subraman, Sai Raghavendra
    Kihara, Daisuke
    Kozakov, Dima
    Vajda, Sandor
    Porter, Kathryn
    Padhorny, Dzmitry
    Desta, Israel
    Beglov, Dmitri
    Ignatov, Mikhail
    Kotelnikov, Sergey
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2019, 87 (12) : 1200 - 1221
  • [33] Critical assessment of methods of protein structure prediction (CASP)- Round IX
    Moult, John
    Fidelis, Krzysztof
    Kryshtafovych, Andriy
    Tramontano, Anna
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2011, 79 : 1 - 5
  • [34] Critical assessment of methods of protein structure prediction (CASP) - Round 6
    Moult, J
    Fidelis, K
    Rost, B
    Hubbard, T
    Tramontano, A
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 61 : 3 - 7
  • [35] Critical assessment of methods of protein structure prediction (CASP): Round III
    Moult, J
    Hubbard, T
    Fidelis, K
    Pedersen, JT
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1999, : 2 - 6
  • [36] Critical assessment of methods of protein structure prediction (CASP)-Round XV
    Kryshtafovych, Andriy
    Schwede, Torsten
    Topf, Maya
    Fidelis, Krzysztof
    Moult, John
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2023, 91 (12) : 1539 - 1549
  • [37] Critical assessment of methods of protein structure prediction (CASP)-Round XIII
    Kryshtafovych, Andriy
    Schwede, Torsten
    Topf, Maya
    Fidelis, Krzysztof
    Moult, John
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2019, 87 (12) : 1011 - 1020
  • [38] Critical assessment of methods of protein structure prediction (CASP)-round V
    Moult, J
    Fidelis, K
    Zemla, A
    Hubbard, T
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 53 : 334 - 339
  • [39] Critical assessment of methods of protein structure prediction (CASP)Round XII
    Moult, John
    Fidelis, Krzysztof
    Kryshtafovych, Andriy
    Schwede, Torsten
    Tramontano, Anna
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2018, 86 : 7 - 15
  • [40] Protein structure prediction using deep learning distance and hydrogen-bonding restraints in CASP14
    Zheng, Wei
    Li, Yang
    Zhang, Chengxin
    Zhou, Xiaogen
    Pearce, Robin
    Bell, Eric W.
    Huang, Xiaoqiang
    Zhang, Yang
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2021, 89 (12) : 1734 - 1751