Geostatistical seismic Amplitude-versus-angle inversion

被引:34
作者
Azevedo, Leonardo [1 ]
Nunes, Ruben [1 ]
Soares, Amilcar [1 ]
Schwedersky Neto, Guenther [2 ]
Martins, Teresa S. [3 ]
机构
[1] Univ Lisbon, CERENA DE Civil, Petr Grp, Inst Super Tecn, P-1649004 Lisbon, Portugal
[2] Petrobras Res Ctr, Ave Horacio Macedo 950, BR-95021941 Rio De Janeiro, RJ, Brazil
[3] Galp Exploracao & Prod SA, Rua Tomas Fonseca,Torre A,10 Andar, P-1600209 Lisbon, Portugal
关键词
Reservoir geophysics; Geostatistical seismic AVA inversion; Stochastic sequential simulation; ROCK PHYSICS; UNCERTAINTY; SIMULATION; FACIES;
D O I
10.1111/1365-2478.12589
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Seismic inversion plays an important role in reservoir modelling and characterisation due to its potential for assessing the spatial distribution of the sub-surface petro-elastic properties. Seismic amplitude-versus-angle inversion methodologies allow to retrieve P-wave and S-wave velocities and density individually allowing a better characterisation of existing litho-fluid facies. We present an iterative geostatistical seismic amplitude-versus-angle inversion algorithm that inverts pre-stack seismic data, sorted by angle gather, directly for: density; P-wave; and S-wave velocity models. The proposed iterative geostatistical inverse procedure is based on the use of stochastic sequential simulation and co-simulation algorithms as the perturbation technique of the model parametre space; and the use of a genetic algorithm as a global optimiser to make the simulated elastic models converge from iteration to iteration. All the elastic models simulated during the iterative procedure honour the marginal prior distributions of P-wave velocity, S-wave velocity and density estimated from the available well-log data, and the corresponding joint distributions between density versus P-wave velocity and P-wave versus S-wave velocity. We successfully tested and implemented the proposed inversion procedure on a pre-stack synthetic dataset, built from a real reservoir, and on a real pre-stack seismic dataset acquired over a deep-water gas reservoir. In both cases the results show a good convergence between real and synthetic seismic and reliable high-resolution elastic sub-surface Earth models.
引用
收藏
页码:116 / 131
页数:16
相关论文
共 25 条
[1]  
[Anonymous], 1997, Technometrics
[2]  
[Anonymous], 1998, GSLIB Geostatistical software library and users guide
[3]   Integration of well data into geostatistical seismic amplitude variation with angle inversion for facies estimation [J].
Azevedo, Leonardo ;
Nunes, Ruben ;
Soares, Amilcar ;
Mundin, Evaldo C. ;
Neto, Guenther Schwedersky .
GEOPHYSICS, 2015, 80 (06) :M113-M128
[4]   Multidimensional scaling for the evaluation of a geostatistical seismic elastic inversion methodology [J].
Azevedo, Leonardo ;
Nunes, Ruben ;
Correia, Pedro ;
Soares, Amilcar ;
Guerreiro, Luis ;
Neto, Guenther Schwedersky .
GEOPHYSICS, 2014, 79 (01) :M1-M10
[5]  
Bortoli L.J., 1992, Geostatistics troia, P325, DOI [10.1007/978-94-011-1739-5_27, DOI 10.1007/978-94-011-1739-5_27]
[6]   Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review [J].
Bosch, Miguel ;
Mukerji, Tapan ;
Gonzalez, Ezequiel F. .
GEOPHYSICS, 2010, 75 (05) :A165-A176
[7]   Inversion of seismic refraction data using genetic algorithms [J].
Boschetti, F ;
Dentith, MC ;
List, RD .
GEOPHYSICS, 1996, 61 (06) :1715-1727
[8]   Bayesian linearized AVO inversion [J].
Buland, A ;
Omre, H .
GEOPHYSICS, 2003, 68 (01) :185-198
[9]  
Doyen P. M., 2007, Seismic Reservoir Characterization: An Earth Modelling Perspective
[10]   Seismic inversion combining rock physics and multiple-point geostatistics [J].
Gonzalez, Ezequiel F. ;
Mukerji, Tapan ;
Mavko, Gary .
GEOPHYSICS, 2008, 73 (01) :R11-R21