ON ANALYTICAL SOLUTIONS OF THE CONFORMABLE TIME-FRACTIONAL NAVIER-STOKES EQUATION

被引:1
作者
Cheng, Xiaoyu [1 ]
Wang, Lizhen [1 ]
Shen, Shoufeng [2 ]
机构
[1] Northwest Univ, Ctr Nonlinear Studies, Sch Math, Xian 710127, Peoples R China
[2] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
conformable time-fractional Navier-Stokes equation; Lie symmetry analysis; q-ho-motopy analysis method; separation of variables method; fractional Laplace and finite Hankel transforms; PARTIAL-DIFFERENTIAL-EQUATIONS; LIE SYMMETRY ANALYSIS; BURGERS;
D O I
10.1016/S0034-4877(22)00037-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate the analytical solutions of conformable time-fractional Navier- Stokes equation (CTFNSE) in cylindrical coordinates. The solutions are constructed applying Lie symmetry analysis, separation of variables method, q-homotopy analysis method (q-HAM) and the fractional Laplace and finite Hankel transforms, respectively. In addition, based on the above symmetries, the conservation laws of CTFNSE are derived using new Noether theorem. The profiles of some exact solutions are presented for the purpose of visualization.
引用
收藏
页码:335 / 358
页数:24
相关论文
共 41 条
[11]   Analytical Solution of Time-Fractional Navier-Stokes Equation in Polar Coordinate by Homotopy Perturbation Method [J].
Ganji, Z. Z. ;
Ganji, D. D. ;
Ganji, Ammar D. ;
Rostamian, M. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (01) :117-124
[13]   Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative [J].
Huang, Qing ;
Zhdanov, Renat .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 409 :110-118
[14]   Nonlinear self-adjointness, conservation laws, and the construction of solutions of partial differential equations using conservation laws [J].
Ibragimov, N. H. ;
Avdonina, E. D. .
RUSSIAN MATHEMATICAL SURVEYS, 2013, 68 (05) :889-921
[15]   A new conservation theorem [J].
Ibragimov, Nail H. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) :311-328
[16]   On the analytical solution of Fornberg-Whitham equation with the new fractional derivative [J].
Iyiola, Olaniyi Samuel ;
Ojo, Gbenga Olayinka .
PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (04) :567-575
[17]  
Kasatkin, 2007, VESTNIK USATU, V9, P21, DOI DOI 10.1088/0031-8949/2009/T136/014016
[18]   A new definition of fractional derivative [J].
Khalil, R. ;
Al Horani, M. ;
Yousef, A. ;
Sababheh, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 264 :65-70
[19]  
Khalil R., 2015, International Journal of Pure and Applied Mathematics, V103, P667, DOI [10.12732/ijpam.v103i4.6, DOI 10.12732/ijpam.v103i4.6]
[20]  
Kilbas A.A., 2006, Theory and Applications of Fractional Differential Equations