ON ANALYTICAL SOLUTIONS OF THE CONFORMABLE TIME-FRACTIONAL NAVIER-STOKES EQUATION

被引:1
作者
Cheng, Xiaoyu [1 ]
Wang, Lizhen [1 ]
Shen, Shoufeng [2 ]
机构
[1] Northwest Univ, Ctr Nonlinear Studies, Sch Math, Xian 710127, Peoples R China
[2] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
conformable time-fractional Navier-Stokes equation; Lie symmetry analysis; q-ho-motopy analysis method; separation of variables method; fractional Laplace and finite Hankel transforms; PARTIAL-DIFFERENTIAL-EQUATIONS; LIE SYMMETRY ANALYSIS; BURGERS;
D O I
10.1016/S0034-4877(22)00037-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate the analytical solutions of conformable time-fractional Navier- Stokes equation (CTFNSE) in cylindrical coordinates. The solutions are constructed applying Lie symmetry analysis, separation of variables method, q-homotopy analysis method (q-HAM) and the fractional Laplace and finite Hankel transforms, respectively. In addition, based on the above symmetries, the conservation laws of CTFNSE are derived using new Noether theorem. The profiles of some exact solutions are presented for the purpose of visualization.
引用
收藏
页码:335 / 358
页数:24
相关论文
共 41 条
[1]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[2]  
[Anonymous], 1918, GOTT NACHR, DOI [10.1080/00411457108231446 [physics/0503066, DOI 10.1080/00411457108231446[PHYSICS/0503066]
[3]  
Asmar N, 1999, PARTIAL DIFFERENTIAL
[4]   The solutions of time and space conformable fractional heat equations with conformable Fourier transform [J].
Cenesiz, Yucel ;
Kurt, Ali .
ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2015, 7 (02) :130-140
[5]   Lie symmetry analysis of conformable differential equations [J].
Chatibil, Youness ;
El Kinani, El Hassan ;
Ouhadan, Abdelaziz .
AIMS MATHEMATICS, 2019, 4 (04) :1133-1144
[6]  
Chaurasia V.B. L., 2011, Gen. Math. Notes, V4, P49
[7]   Solving time fractional Keller-Segel type diffusion equations with symmetry analysis, power series method, invariant subspace method and q-homotopy analysis method [J].
Cheng, Xiaoyu ;
Wang, Lizhen ;
Hou, Jie .
CHINESE JOURNAL OF PHYSICS, 2022, 77 :1639-1653
[8]   Invariant analysis, exact solutions and conservation laws of (2+1)-dimensional time fractional Navier-Stokes equations [J].
Cheng, Xiaoyu ;
Wang, Lizhen .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2250)
[9]   Lie symmetry analysis, invariant subspace method and q-homotopy analysis method for solving fractional system of single-walled carbon nanotube [J].
Cheng, Xiaoyu ;
Hou, Jie ;
Wang, Lizhen .
COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (04)
[10]   On the generalized Navier-Stokes equations [J].
El-Shahed, M ;
Salem, A .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (01) :287-293