EXISTENCE OF SOLUTION TO A NONLOCAL CONFORMABLE FRACTIONAL THERMISTOR PROBLEM

被引:6
作者
Ammi, Moulay Rchid Sidi [1 ]
Torres, Delfim F. M. [2 ]
机构
[1] Moulay Ismail Univ, Fac Sci & Tech, AMNEA Grp, Dept Math, BP 509, Errachidia, Morocco
[2] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat CIDMA, P-3810193 Aveiro, Portugal
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2019年 / 68卷 / 01期
关键词
Existence of solutions; fractional differential equations; conformable fractional derivatives; CALCULUS;
D O I
10.31801/cfsuasmas.501582
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a nonlocal thermistor problem for fractional derivatives in the conformable sense. Classical Schauder's fixed point theorem is used to derive the existence of a tube solution.
引用
收藏
页码:1061 / 1072
页数:12
相关论文
共 37 条
  • [21] Hukuhara M., 2017, IOSR Journal of Mathematics, V13, P81, DOI DOI 10.9790/5728-1302028187
  • [22] A new definition of fractional derivative
    Khalil, R.
    Al Horani, M.
    Yousef, A.
    Sababheh, M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 264 : 65 - 70
  • [23] Khalil R., 2015, International Journal of Pure and Applied Mathematics, V103, P667, DOI [10.12732/ijpam.v103i4.6, DOI 10.12732/ijpam.v103i4.6]
  • [24] Kilbas AA, 2006, N HOLLAND MATH STUDI, V204
  • [25] Variational Calculus With Conformable Fractional Derivatives
    Lazo, Matheus J.
    Torres, Delfim F. M.
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2017, 4 (02) : 340 - 352
  • [26] Li C, 2016, ELECTRON J DIFFER EQ, V2016, P207
  • [27] Recent history of fractional calculus
    Machado, J. Tenreiro
    Kiryakova, Virginia
    Mainardi, Francesco
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (03) : 1140 - 1153
  • [28] The theta-Galerkin finite element method for coupled systems resulting from microsensor thermistor problems
    Mbehou, Mohamed
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (04) : 1480 - 1491
  • [29] Miller K.S., 1993, INTRO FRACTIONAL CAL
  • [30] nal E., 2015, Br J Appl Sci Technol, V10, P1, DOI DOI 10.9734/BJAST/2015/18590