Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems

被引:122
作者
Huang, VL [1 ]
Suganthan, PN [1 ]
Liang, JJ [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
D O I
10.1002/int.20128
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents an approach to integrate a Pareto dominance concept into a comprehensive learning particle swarm optimizer (CLPSO) to handle multiple objective optimization problems. The multiobjective comprehensive learning particle swarm optimizer (MOCLPSO) also integrates an external archive technique. Simulation results (obtained using the codes made available on the Web at http://www.ntu.edu.sa/home/EPNSugan) on six test problems show that the proposed MOCLPSO, for most problems, is able to find a much better spread of solutions and faster convergence to the true Pareto-optimal front compared to two other multiobjective optimization evolutionary algorithms. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:209 / 226
页数:18
相关论文
共 50 条
[31]   A Rule Learning Multiobjective Particle Swarm Optimization [J].
de Carvalho, A. B. ;
Pozo, A. T. R. .
IEEE LATIN AMERICA TRANSACTIONS, 2009, 7 (04) :478-486
[32]   Micro-particle swarm optimizer for solving high dimensional optimization problems (μPSO for high dimensional optimization problems) [J].
Huang, Tony ;
Mohan, Ananda Sanagavarapu .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 181 (02) :1148-1154
[33]   A close neighbor mobility method using particle swarm optimizer for solving multimodal optimization problems [J].
Zou, Juan ;
Deng, Qi ;
Zheng, Jinhua ;
Yang, Shengxiang .
INFORMATION SCIENCES, 2020, 519 :332-347
[34]   Solving constrained optimization problems by the ε constrained particle swarm optimizer with adaptive velocity limit control [J].
Takahama, Tetsuyuki ;
Sakai, Setsuko .
2006 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2006, :133-+
[35]   HANDLING DYNAMIC MULTIOBJECTIVE PROBLEMS WITH PARTICLE SWARM OPTIMIZATION [J].
Diaz Manriquez, Alan ;
Toscano Pulido, Gregorio ;
Ramirez Torres, Jose Gabriel .
ICAART 2010: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1: ARTIFICIAL INTELLIGENCE, 2010, :337-342
[36]   Particle Swarm Optimization Algorithm for Solving Optimization Problems [J].
Ozsaglam, M. Yasin ;
Cunkas, Mehmet .
JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2008, 11 (04) :299-305
[37]   An Adaptive Learning Particle Swarm Optimizer for Function Optimization [J].
Li, Changhe ;
Yang, Shengxiang .
2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, :381-388
[38]   Integrated Learning Particle Swarm Optimizer for global optimization [J].
Sabat, Samrat L. ;
Ali, Layak ;
Udgata, Siba K. .
APPLIED SOFT COMPUTING, 2011, 11 (01) :574-584
[39]   Handling multi-objective optimization problems with a comprehensive indicator and layered particle swarm optimizer [J].
Zhang, Xianzi ;
Liu, Yanmin ;
Yang, Jie ;
Liu, Jun ;
Shu, Xiaoli .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) :14866-14898
[40]   Adaptive Parameters for a Modified Comprehensive Learning Particle Swarm Optimizer [J].
Zheng, Yu-Jun ;
Ling, Hai-Feng ;
Guan, Qiu .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012