Scaled boundary polygons for linear elastodynamics

被引:30
作者
Gravenkamp, Hauke [1 ]
Natarajan, Sundararajan [2 ]
机构
[1] Univ Duisburg Essen, Dept Civil Engn, D-45141 Essen, Germany
[2] Indian Inst Technol, Dept Mech Engn, Integrated Modelling & Simulat Lab, Madras 600036, Tamil Nadu, India
关键词
SBFEM; Scaled boundary polygons; Polygonal elements; Wave propagation; Elastodynamics; FINITE-ELEMENT-METHOD; ELASTIC WAVE-GUIDES; SHAPE FUNCTIONS; POLYHEDRAL MESHES; CRACK-PROPAGATION; QUADTREE MESHES; CELL METHOD; COMPUTATION; SIMULATION; CONSTRUCTION;
D O I
10.1016/j.cma.2018.01.031
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A polygonal scaled boundary finite element method (SBFEM) is proposed for linear elastodynamics in two dimensions. The domain is divided into non-overlapping polygonal elements, and the scaled boundary finite element approach is employed over each polygon. The advantages are that an arbitrary interpolation order can be used on each polygon and we can choose the optimal element order on each edge individually. Moreover, the SBFEM simplifies the numerical integration over the polygons when compared to conventional approaches. The dynamic stiffness matrix is computed by employing the continued fraction expansion. The influence of the shape of the polygon and the element order on the boundary of each polygon are studied. The robustness and the accuracy of the approach are demonstrated with numerical examples. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:238 / 256
页数:19
相关论文
共 54 条
[1]  
Ansys Inc., 2017, ANS VERS 18 1 COMP P
[2]   Polygonal finite element methods for contact-impact problems on non-conformal meshes [J].
Biabanaki, S. O. R. ;
Khoei, A. R. ;
Wriggers, P. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 269 :198-221
[3]   An improved continued-fraction-based high-order transmitting boundary for time-domain analyses in unbounded domains [J].
Birk, Carolin ;
Prempramote, Suriyon ;
Song, Chongmin .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 89 (03) :269-298
[4]   On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM) [J].
Bordas, Stephane P. A. ;
Natarajan, Sundararajan ;
Kerfriden, Pierre ;
Augarde, Charles Edward ;
Mahapatra, D. Roy ;
Rabczuk, Timon ;
Dal Pont, Stefano .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 86 (4-5) :637-666
[5]   Polygonal finite elements for finite elasticity [J].
Chi, Heng ;
Talischi, Cameron ;
Lopez-Pamies, Oscar ;
Paulino, Glaucio H. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 101 (04) :305-328
[6]   Scaled boundary polygons with application to fracture analysis of functionally graded materials [J].
Chiong, Irene ;
Ooi, Ean Tat ;
Song, Chongmin ;
Tin-Loi, Francis .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 98 (08) :562-589
[7]   BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS [J].
da Veiga, L. Beirao ;
Brezzi, F. ;
Cangiani, A. ;
Manzini, G. ;
Marini, L. D. ;
Russo, A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (01) :199-214
[8]   An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics [J].
Dai, K. Y. ;
Liu, G. R. ;
Nguyen, T. T. .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2007, 43 (11-12) :847-860
[9]   A meshless local Petrov-Galerkin scaled boundary method [J].
Deeks, AJ ;
Augarde, CE .
COMPUTATIONAL MECHANICS, 2005, 36 (03) :159-170
[10]   A virtual work derivation of the scaled boundary finite-element method for elastostatics [J].
Deeks, AJ ;
Wolf, JP .
COMPUTATIONAL MECHANICS, 2002, 28 (06) :489-504