Fabrication of nanoporous antireflection surfaces on silicon

被引:67
|
作者
Huang, Mao-Jung [2 ]
Yang, Chii-Rong [1 ]
Chiou, Yuang-Cherng [2 ]
Lee, Rong-Tsong [2 ]
机构
[1] Natl Taiwan Normal Univ, Dept Mechatron Technol, Taipei 106, Taiwan
[2] Natl Sun Yat Sen Univ, Dept Mech & Electromech Engn, Kaohsiung 804, Taiwan
关键词
SANSL; PAECE; nanopore array; antireflection structure;
D O I
10.1016/j.solmat.2008.05.014
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
After the surface of a silicon wafer has been texturized, the reflectance of the wafer surface can be reduced to increase the power generation efficiency of a silicon-based solar cell. This study presents the integration of self-assembled nanosphere lithography (SANSL) and photo-assisted electrochemical etching (PAECE) to fabricate a nanostructure array with a high aspect ratio on the surface of silicon wafer, to reduce its reflectance. The experimental results show that the etching depth of the fabricated nanopore array structure is about 6.2 mu m and its diameter is about 90 nm, such that the aspect ratio of the pore can reach about 68: 1. The weighted mean reflectance of a blank silicon wafer is 40.2% in the wavelength range of 280-890nm. Five-minute PAECE without SANSL reduces the weighted mean reflectance to 5.16%. Five-minute PAECE with SANSL reduces the weighted mean reflectance to 1.73%. Further coating of a 200 A thick silicon nitride layer on the surface of a nanostructure array reduces the weighted mean reflectance even to 0.878%. The novel fabrication technology proposed in this study has the advantage of being low cost, and the fabricated nanostructure array can be employed as an antireflection structure in single crystalline silicon solar cells. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1352 / 1357
页数:6
相关论文
共 50 条
  • [11] Antireflection properties of graphene layers on planar and textured silicon surfaces
    Kumar, Rakesh
    Sharma, A. K.
    Bhatnagar, Mehar
    Mehta, B. R.
    Rath, Shyama
    NANOTECHNOLOGY, 2013, 24 (16)
  • [12] Fabrication and Characterization of Nanoporous Silicon Relative Humidity Sensors
    S. Oguz Aytekin
    R. Ince
    International Journal of Thermophysics, 2015, 36 : 3421 - 3439
  • [13] Fabrication of functional silicon-based nanoporous membranes
    Ileri, Nazar
    Stroeve, Pieter
    Palazoglu, Ahmet
    Faller, Roland
    Zaidi, Saleem H.
    Nguyen, Hoang T.
    Britten, Jerald A.
    Letant, Sonia E.
    Tringe, Joseph W.
    JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2012, 11 (01):
  • [14] Fabrication of a high aspect ratio nanoporous array on silicon
    Ho, Jing-Yu
    Chang, Kang J.
    Wang, Gou-Jen
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2012, 18 (11): : 1849 - 1856
  • [15] Fabrication and Characterization of Nanoporous Silicon Relative Humidity Sensors
    Aytekin, S. Oguz
    Ince, R.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2015, 36 (12) : 3421 - 3439
  • [16] Fabrication of nanoporous silicon carbide fibres by thermal treatment
    Shin, D. G.
    Cho, K. Y.
    Kim, Y.
    Kwon, W. T.
    Kim, S. R.
    Lee, Y. J.
    Riu, D. H.
    ADVANCES IN APPLIED CERAMICS, 2014, 113 (06) : 341 - 345
  • [17] Fabrication of a high aspect ratio nanoporous array on silicon
    Jing-Yu Ho
    Kang J. Chang
    Gou-Jen Wang
    Microsystem Technologies, 2012, 18 : 1849 - 1856
  • [18] One-step Fabrication of Nanoporous Black Silicon Surfaces for Solar Cells using Modified Etching Solution
    Tang, Ye-hua
    Zhou, Chun-lan
    Zhou, Su
    Zhao, Yan
    Wang, Wen-jing
    Fei, Jian-ming
    Cao, Hong-bin
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2013, 26 (01) : 102 - 108
  • [19] Nanoporous organosilicate films as antireflection coatings
    Biswas, Koushik
    Gangopadhyay, Shubhra
    Kim, Ho-Cheol
    Miller, Robert D.
    THIN SOLID FILMS, 2006, 514 (1-2) : 350 - 354
  • [20] Fabrication of antireflection surfaces with superhydrophobic property for titanium alloy by nanosecond laser irradiation
    Li, Jiaru
    Xu, Jinkai
    Lian, Zhongxu
    Yu, Zhanjiang
    Yu, Huadong
    OPTICS AND LASER TECHNOLOGY, 2020, 126 (126):