Fabrication of nanoporous antireflection surfaces on silicon

被引:67
|
作者
Huang, Mao-Jung [2 ]
Yang, Chii-Rong [1 ]
Chiou, Yuang-Cherng [2 ]
Lee, Rong-Tsong [2 ]
机构
[1] Natl Taiwan Normal Univ, Dept Mechatron Technol, Taipei 106, Taiwan
[2] Natl Sun Yat Sen Univ, Dept Mech & Electromech Engn, Kaohsiung 804, Taiwan
关键词
SANSL; PAECE; nanopore array; antireflection structure;
D O I
10.1016/j.solmat.2008.05.014
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
After the surface of a silicon wafer has been texturized, the reflectance of the wafer surface can be reduced to increase the power generation efficiency of a silicon-based solar cell. This study presents the integration of self-assembled nanosphere lithography (SANSL) and photo-assisted electrochemical etching (PAECE) to fabricate a nanostructure array with a high aspect ratio on the surface of silicon wafer, to reduce its reflectance. The experimental results show that the etching depth of the fabricated nanopore array structure is about 6.2 mu m and its diameter is about 90 nm, such that the aspect ratio of the pore can reach about 68: 1. The weighted mean reflectance of a blank silicon wafer is 40.2% in the wavelength range of 280-890nm. Five-minute PAECE without SANSL reduces the weighted mean reflectance to 5.16%. Five-minute PAECE with SANSL reduces the weighted mean reflectance to 1.73%. Further coating of a 200 A thick silicon nitride layer on the surface of a nanostructure array reduces the weighted mean reflectance even to 0.878%. The novel fabrication technology proposed in this study has the advantage of being low cost, and the fabricated nanostructure array can be employed as an antireflection structure in single crystalline silicon solar cells. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1352 / 1357
页数:6
相关论文
共 50 条
  • [1] Design and fabrication of antireflection structured surfaces
    Chen, S., 2001, Chinese Optical Society (21):
  • [2] Influence of the fabrication technique on the porous size of the polymer nanoporous antireflection coatings
    Zhao, M
    Yang, ZY
    Zhu, DQ
    Jin, X
    Huang, DX
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2005, 22 (06) : 1330 - 1334
  • [3] Maskless fabrication of broadband antireflection nanostructures on glass surfaces
    Tamayo, E. E. R.
    Hoshii, T.
    Tamaki, R.
    Watanabe, K.
    Sugiyama, M.
    Okada, Y.
    Miyano, K.
    JOURNAL OF OPTICS, 2016, 18 (06)
  • [4] THE REFLECTION COEFFICIENT OF ANTIREFLECTION COATED SURFACES OF SILICON PHOTOCELLS
    MALOVETSKAYA, VM
    VAVILOV, VS
    GALKIN, GN
    SOVIET PHYSICS-SOLID STATE, 1960, 1 (08): : 1099 - 1101
  • [5] ANTIREFLECTION SURFACES IN SILICON USING BINARY OPTICS TECHNOLOGY
    MOTAMEDI, ME
    SOUTHWELL, WH
    GUNNING, WJ
    APPLIED OPTICS, 1992, 31 (22): : 4371 - 4376
  • [6] Fabrication and surface modification of micro/nanoporous silicon
    Kar, J. P.
    Mohanta, S. K.
    Bose, G.
    Tuli, S.
    Kamra, A.
    Mathur, V.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2009, 11 (03): : 238 - 242
  • [7] Fabrication of surface textures by ion implantation for antireflection of silicon crystals
    Kadakia, Nirag
    Naczas, Sebastian
    Bakhru, Hassaram
    Huang, Mengbing
    APPLIED PHYSICS LETTERS, 2010, 97 (19)
  • [8] Templated fabrication of large area subwavelength antireflection gratings on silicon
    Sun, Chih-Hung
    Min, Wei-Lun
    Linn, Nicholas C.
    Jiang, Peng
    Jiang, Bin
    APPLIED PHYSICS LETTERS, 2007, 91 (23)
  • [9] Nanostructured silicon surfaces via nanoporous alumina
    Kruse, M
    Franzka, S
    Schmid, G
    CHEMICAL COMMUNICATIONS, 2003, (12) : 1333 - 1335
  • [10] Thermal characterization of nanoporous 'black silicon' surfaces
    Nichols, Logan
    Duan, Wenqi
    Toor, Fatima
    NANOSTRUCTURED THIN FILMS IX, 2016, 9929