Conservative ensembles for nonequilibrium lattice-gas systems

被引:2
|
作者
de Oliveira, M. J. [1 ]
Tome, T. [1 ]
机构
[1] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
来源
EUROPEAN PHYSICAL JOURNAL B | 2008年 / 64卷 / 3-4期
关键词
D O I
10.1140/epjb/e2008-00156-3
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We show how to set up a constant particle ensemble for the steady state of nonequilibrium lattice-gas systems which originally are defined on a constant rate ensemble. We focus on nonequilibrium systems in which particles are created and annihilated on the sites of a lattice and described by a master equation. We consider also the case in which a quantity other than the number of particle is conserved. The conservative ensembles can be useful in the study of phase transitions and critical phenomena particularly discontinuous phase transitions.
引用
收藏
页码:409 / 414
页数:6
相关论文
共 50 条
  • [21] The future of lattice-gas and lattice Boltzmann methods
    Luo, LS
    COMPUTATIONAL AEROSCIENCES IN THE 21ST CENTURY, 2000, 8 : 165 - 187
  • [22] QUANTUM STATISTICS AND DISCRETENESS - DIFFERENCES BETWEEN THE CANONICAL AND GRAND-CANONICAL ENSEMBLES FOR A FERMIONIC LATTICE-GAS
    KUTNER, R
    PRZENIOSLO, R
    KWIATKOWSKI, M
    ANNALEN DER PHYSIK, 1995, 4 (07) : 646 - 667
  • [23] Phase diagrams of adsorption systems and calibration functions in the lattice-gas model
    Tovbin, YK
    Rabinovich, AB
    LANGMUIR, 2004, 20 (14) : 6041 - 6051
  • [24] RANDOM-WALK THEORY AND ORDERED PHASES IN LATTICE-GAS SYSTEMS
    ROBLEDO, A
    FARQUHAR, IE
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1976, 84 (03) : 449 - 471
  • [25] Diffusion and correlations in lattice-gas automata
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 56 (06):
  • [26] Lattice-gas model for intercalation compounds
    Kalikmanov, VI
    Koudriachova, MV
    de Leeuw, SW
    SOLID STATE IONICS, 2000, 136 : 1373 - 1378
  • [27] Traffic jams in a lattice-gas model
    Braun, O
    Hu, B
    JOURNAL OF STATISTICAL PHYSICS, 1998, 92 (3-4) : 629 - 649
  • [28] LEVY WALK IN LATTICE-GAS HYDRODYNAMICS
    HAYOT, F
    PHYSICAL REVIEW A, 1991, 43 (02): : 806 - 810
  • [29] Traffic Jams in a Lattice-Gas Model
    Oleg Braun
    Bambi Hu
    Journal of Statistical Physics, 1998, 92 : 629 - 649
  • [30] Diffusion in generalized lattice-gas models
    Braun, OM
    Sholl, CA
    PHYSICAL REVIEW B, 1998, 58 (22) : 14870 - 14879