How to best sample a periodic probability distribution, or on the accuracy of Hamiltonian finding strategies

被引:49
作者
Ferrie, Christopher [1 ,2 ]
Granade, Christopher E. [1 ,3 ]
Cory, D. G. [1 ,4 ,5 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Phys, Waterloo, ON N2L 3G1, Canada
[4] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada
[5] Perimeter Inst Theoret Phys, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Quantum process tomography; Hamiltonian estimation; Experiment design; Parameter estimation; Cramer-Rao bound; Adaptive tomography;
D O I
10.1007/s11128-012-0407-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Projective measurements of a single two-level quantum mechanical system (a qubit) evolving under a time-independent Hamiltonian produce a probability distribution that is periodic in the evolution time. The period of this distribution is an important parameter in the Hamiltonian. Here, we explore how to design experiments so as to minimize error in the estimation of this parameter. While it has been shown that useful results may be obtained by minimizing the risk incurred by each experiment, such an approach is computationally intractable in general. Here, we motivate and derive heuristic strategies for experiment design that enjoy the same exponential scaling as fully optimized strategies. We then discuss generalizations to the case of finite relaxation times, T (2) < a.
引用
收藏
页码:611 / 623
页数:13
相关论文
共 12 条
[1]  
[Anonymous], 2006, Elements of Information Theory
[2]   EXPONENTIAL SAMPLING, AN ALTERNATIVE METHOD FOR SAMPLING IN TWO-DIMENSIONAL NMR EXPERIMENTS [J].
BARNA, JCJ ;
LAUE, ED ;
MAYGER, MR ;
SKILLING, J ;
WORRALL, SJP .
JOURNAL OF MAGNETIC RESONANCE, 1987, 73 (01) :69-77
[3]   Quantum information and precision measurement [J].
Childs, Andrew M. ;
Preskill, John ;
Reness, Joseph .
Journal of Modern Optics, 2000, 47 (2-3 SPEC.) :155-176
[4]  
CHYLLA RA, 1995, J BIOMOL NMR, V5, P245
[5]  
Gill RD., 1995, Bernoulli, V1
[6]  
Granade C.E., 2011, BAYESIAN IN IN PRESS
[7]   ASYMPTOTIC PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATIONS FOR INDEPENDENT NOT IDENTICALLY DISTRIBUTED CASE [J].
HOADLEY, B .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06) :1977-&
[8]   Applications of Non-Uniform Sampling and Processing [J].
Hyberts, Sven G. ;
Arthanari, Haribabu ;
Wagner, Gerhard .
NOVEL SAMPLING APPROACHES IN HIGHER DIMENSIONAL NMR, 2012, 316 :125-148
[9]  
Lehmann E. L., 2006, THEORY POINT ESTIMAT, DOI 10.1007/b98854
[10]   Nonuniform sampling and spectral aliasing [J].
Maciejewski, Mark W. ;
Qui, Harry Z. ;
Rujan, Iulian ;
Mobli, Mehdi ;
Hoch, Jeffrey C. .
JOURNAL OF MAGNETIC RESONANCE, 2009, 199 (01) :88-93