Attractors for lattice FitzHugh-Nagumo systems

被引:64
|
作者
Van Vleck, E
Wang, BX [1 ]
机构
[1] New Mexico Inst Min & Technol, Dept Math, Socorro, NM 87801 USA
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
global attractor; lattice dynamical system; FitzHugh-Nagumo equation;
D O I
10.1016/j.physd.2005.10.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The FitzHugh-Nagumo system on infinite lattices is studied. By means of "tail ends" estimates on solutions, it is proved that the system is asymptotically compact in a weighted 12 space and has a compact global attractor containing traveling wave solutions. The singular limiting behavior of global attractors is also investigated as a singular parameter epsilon -> 0. It is shown that the limiting system for epsilon = 0 has no global attractor, but all the global attractors for perturbed systems are contained in a common compact subset of the phase space when E is positive but small. Further, a compact local attractor for the limiting system is constructed, and the upper semicontinuity of global attractors is established when epsilon -> 0. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:317 / 336
页数:20
相关论文
共 50 条
  • [11] FRONTS IN SUBDIFFUSIVE FITZHUGH-NAGUMO SYSTEMS
    Nepomnyashchy, A. A.
    Volpert, V. A.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2019, 14 (05)
  • [12] Limiting Dynamics for Stochastic FitzHugh-Nagumo Lattice Systems in Weighted Spaces
    Chen, Zhang
    Yang, Dandan
    Zhong, Shitao
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (01) : 321 - 352
  • [13] Synchronization of the coupled FitzHugh-Nagumo systems
    Uçar, A
    Lonngren, KE
    Bai, EW
    CHAOS SOLITONS & FRACTALS, 2004, 20 (05) : 1085 - 1090
  • [14] Deterministic and Stochastic FitzHugh-Nagumo Systems
    Thieullen, Michele
    STOCHASTIC BIOMATHEMATICAL MODELS: WITH APPLICATIONS TO NEURONAL MODELING, 2013, 2058 : 175 - 186
  • [15] Random attractors for the stochastic FitzHugh-Nagumo system on unbounded domains
    Wang, Bixiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 2811 - 2828
  • [16] Liouvillian integrability of the FitzHugh-Nagumo systems
    Llibre, Jaume
    Valls, Claudia
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (12) : 1974 - 1983
  • [17] Synchronization properties of coupled FitzHugh-Nagumo systems
    Tessone, CJ
    Toral, R
    Mirasso, CR
    Gunton, JD
    PHYSICS OF COMPLEX SYSTEMS (NEW ADVANCES AND PERSPECTIVES), 2004, 155 : 461 - 467
  • [18] Analytic first integrals of the FitzHugh-Nagumo systems
    Llibre, Jaume
    Valls, Claudia
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (02): : 237 - 245
  • [19] Stationary probability distributions for FitzHugh-Nagumo systems
    Kostur, M
    Sailer, X
    Schimansky-Geier, L
    FLUCTUATION AND NOISE LETTERS, 2003, 3 (02): : L155 - L166
  • [20] Control of spiral waves in FitzHugh-Nagumo systems
    Gao Jia-Zhen
    Xie Ling-Ling
    Xie Wei-Miao
    Gao Ji-Hua
    ACTA PHYSICA SINICA, 2011, 60 (08)