Prediction of fractional processes with long-range dependence

被引:0
作者
Inoue, Akihiko [1 ]
Anh, Vo V. [2 ]
机构
[1] Hiroshima Univ, Dept Math, Higashihiroshima 7398526, Japan
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
关键词
Predictor coefficients; prediction; fractional Brownian motion; long-range dependence; BROWNIAN-MOTION; FINANCIAL-MARKETS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a class of Gaussian processes with stationary increments which exhibit long-range dependence. The class includes fractional Brownian motion with Hurst parameter H > 1/2 as a typical example. We establish infinite and finite past prediction formulas for the processes in which the predictor coefficients are given explicitly in terms of the MA(infinity) and AR(infinity) coefficients.
引用
收藏
页码:157 / 183
页数:27
相关论文
共 27 条
[21]   An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions [J].
Norros, I ;
Valkeila, E ;
Virtamo, J .
BERNOULLI, 1999, 5 (04) :571-587
[22]  
Nualart D, 2003, CONT MATH, V336, P3
[23]   Linear estimation of self-similar processes via Lamperti's transformation [J].
Nuzman, CJ ;
Poor, HV .
JOURNAL OF APPLIED PROBABILITY, 2000, 37 (02) :429-452
[24]  
Samorodnitsky Samorodnitsky G. G., Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance
[25]  
Taqqu MS, 2003, THEORY AND APPLICATIONS OF LONG-RANGE DEPENDENCE, P5
[26]   Stochastic evolution equations with fractional Brownian motion [J].
Tindel, S ;
Tudor, CA ;
Viens, E .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 127 (02) :186-204
[27]  
Yaglom AM., 1958, AM MATH SOC TRANSL 2, V8, P87