Coherent states, pseudodifferential analysis and arithmetic

被引:0
作者
Unterberger, Andre [1 ]
机构
[1] Univ Reims, F-51687 Reims, France
关键词
D O I
10.1088/1751-8113/45/24/244016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Basic questions regarding families of coherent states include describing some constructions of such and the way they can be applied to operator theory or partial differential equations. In both questions, pseudodifferential analysis is important. Recent developments indicate that they can contribute to methods in arithmetic, especially modular form theory.
引用
收藏
页数:13
相关论文
共 34 条
[1]  
[Anonymous], 1982, ASTERISQUE
[2]  
[Anonymous], MEM SOC MATH FRANCE
[3]  
[Anonymous], 1986, GEN COHERENT STATES
[4]  
Auslander L, 1995, J FOURIER ANAL APPL, V2, P191
[5]   CHARACTERIZATION OF PSEUDODIFFERENTIAL OPERATORS AND APPLICATIONS [J].
BEALS, R .
DUKE MATHEMATICAL JOURNAL, 1977, 44 (01) :45-57
[6]  
BEREZIN F. A., 1975, Math. USSR Izv., V9, P341
[7]  
BEREZIN FA, 1978, SOV MATH DOKL, V19, P786
[8]  
BROS J, 1973, ANN I H POINCARE A, V18, P147
[9]  
Bump D, 1996, CAMBRIDGE SERIES ADV, V55
[10]  
Cordoba A., 1978, COMMUN PART DIFF EQ, V3, P979